COVID-19: The transcendence of the scientific information generated by the WHO and its dissemination in a Cuban scientific institution's ecosystem
Keywords:
COVID-19, SARS-CoV-2, World Health Organization, WHO, Ecosystem, Natural language processing, Epidemiological monitoring, CubaAbstract
Introduction: During the COVID-19 pandemic, the Pedro Kourí Tropical Medicine Institute processed information generated by the World Health Organization to produce systematic updates for experts and decision makers.
Objective: Evaluate the impact of updates to information generated by the WHO during the COVID-19 pandemic on the Pedro Kourí Tropical Medicine Institute’s ecosystem and its determining factors, as part of the institution's knowledge management.
Methods: From February 2020 to June 2022, a retrospective, descriptive and analytical study was conducted to evaluate the reliability, relevance, and sufficiency of the updates. This evaluation was based on sampling, re-evaluation, web-based research, and consultations with experts via questionnaires. Natural language processing was introduced to quantify lexemes with cognitive value, classify them into thematic areas (e.g., clinical, diagnosis, vaccines, viral variants, etc.), and assess their evolution over time.
Results: A total of 713 documents were processed, resulting in 217 reports. The update frequency changed from 2.2 times per week in 2020 to once per week in 2022. There were no inconsistencies or omissions between the disseminated information and its original web sources. Experts positively assessed the fulfillment of informational requirements. Natural language processing identified 267 gnoseological lexemes with low relative frequencies and concentrated in the last quartile (6.8, 6.2 and 7.1 per 1000, in 2020, 2021 and 2022 respectively). Their categorization by area revealed their temporal evolution. Thus, clinical-epidemiological content predominated in 2020 (>50%), while the virus topic represented 55.8% in 2022, reflecting its predominance without losing comprehensiveness.
Conclusions: The updates were reliable, relevant, and sufficient, offering a concise and dynamic overview of global scientific developments. Natural language processing enabled innovative analyses that evidenced the thematic evolution and coherence of the disseminated content. These tools strengthened Pedro Kourí Tropical Medicine Institute’s knowledge ecosystem, which was essential for managing the pandemic. Integrating classical methodologies with computational techniques proved effective in optimizing information transfer in healthcare contexts.
Downloads
References
1. World Health Organization (WHO). WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. Geneva: World Health Organization; 2020 [acceso 17/05/2023]. Disponible en: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
2. Ministerio de Salud Pública (MINSAP). Protocolo vs. COVID-19. V: 2.1 (4 de abril 2020). La Habana: MINSAP; 2020 [acceso 15/05/2022]. Disponible en: https://files.sld.cu/sars/files/2020/04/Protocolo-provisional-de-Cuba-vs-COVID-4abril2020.pdf
3. Durán García FA. Estrategia de enfrentamiento a la epidemia de COVID-19, Cuba, 2020. Rev Cubana Salud Púb. 2022 [acceso 17/05/2023];48:4:3688. Disponible en: https://revsaludpublica.sld.cu/index.php/spu/article/view/3688
4. Castro Peraza M, Jiménez Pérez N, Cabrera Marquetti R. Capacitación para la COVID-19: experiencias del Instituto de Medicina Tropical “Pedro Kourí”. Rev Cubana Hig Epidemiol. 2020 [acceso 10/10/2023];57:e669. Disponible en: https://revepidemiologia.sld.cu/index.php/hie/article/view/669
5. Zaracostas J. How to fight an infodemic. Lancet. 2020;395(10225):676. DOI: https://doi.org/10.1016/S0140-6736(20)30461-X
6. Ali Al-Garadi M, Yang Y-C, Sarker A. The Role of Natural Language Processing during the COVID-19 Pandemic: Health Applications, Opportunities, and Challenges. Healthcare. 2022;10(11):2270. DOI: https://doi.org/10.3390/healthcare10112270
7. World Health Organization (WHO). Novel Coronavirus (2019-nCoV) SITUATION REPORT – 1. Geneva: WHO; 2020 [acceso 01/04/2020]. Disponible en: https://www.who.int/docs/default-source/coronaviruse/situationwww.sciencedirect.com-reports/20200121-sitrep-1-2019-ncov.pdf
8. World Health Organization (WHO). Coronavirus disease (COVID-19) Weekly Epidemiological Update-1; 2020 [acceso 01/09/2020]. Disponible en: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200817-weekly-epi-update-1.pdf
9. World Health Organization (WHO). Weekly Operational Update on COVID-19. Geneva: WHO; 2020 [acceso 20/09/2020]. Disponible en: https://www.who.int/publications/m/item/weekly-update-on-covid-19---14-august-2020
10. Demski J, Sunder S, Fellingham JC, Ijiri Y, Glover J, Liang PJ. Some Thoughts on the Intellectual Foundations of Accounting. Account Horizons. 2002;16(2):157-68. DOI: https://doi.org/10.3390/healthcare101122700.2139/ssrn.305904
11. Castro Viguera Y, Chávez Montejo Y. La interdisciplinariedad en la formación profesional del analista de información: propuesta de competencias. Cienc Informac. 2012 [acceso 12/09/2023];43(2):55-9. Disponible en:
https://www.redalyc.org/pdf/1814/181423798008.pdf
12. García Valdés M, Suárez Marín M. El método Delphi para la consulta a expertos en la investigación científica. Rev Cubana Salud Púb. 2013 [acceso 14/09/2023];39(2):253-67. Disponible en: http://scielo.sld.cu/scielo.php?script=sciarttext&pid=S0864-34662013000200007&lng= es
13. Santana O, Pérez J, Carreras F, Duque JD, Hernández Z, Rodríguez G. FLANOM. Flexionador y lematizador automático de formas nominales. Departamento de Informática y Sistemas. Universidad de las Palmas de Gran Canaria. 1999 [acceso 10/07/2023];21(2):253-97. Disponible en:
https://tulengua.iatext.ulpgc.es/papers/flanom.pdf
14. Jurafsky D, Martin JH. Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Stanford University and University of Colorado at Boulder. Third Edition draft. Stanford: Stanford University; 2023 [acceso 10/07/2023]. pp. 1-621. Disponible en: https://web.stanford.edu/~jurafsky/slp3/ed3book_jan72023.pdf
15. World Health Organization (WHO). COVID-19 Strategic Preparedness and Response Plan (SPRP 2021). Geneva: WHO; 2021 [acceso 20/10/2022]. Disponible en: https://www.who.int/publications/i/item/WHO-WHE-2021.02
16. Fellows I. Package ‘wordcloud’ (V.2.6). 2022 [acceso 20/10/2023]. Disponible en: https://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf
17. World Health Organization (WHO). GRADE: Grading of Recommendations Assessment, Development and Evaluation. Geneva: WHO; 2020 [acceso 18/07/2023]. Disponible en: https://www.who.int/publications/i/item/9789240030718
18. Wild CJ, Pfannkuch M. Statistical thinking in empirical enquiry. Internat Statist Rev. 1999;67(3):223-48. DOI: https://doi.org/0.1111/j.1751-5823.1999.tb00442.x
19. Organización Internacional de Normalización. Normas de Calidad y Certificación de Calidad ISO 9001. 2015(es) [acceso 20/12/2023]. Disponible en: https://www.normas-iso.com/certificacion-iso-9001/
20. Organización Mundial de la Salud (OMS). 75ª Asamblea Mundial de la Salud. #WHA75. Ginebra: OMS; 2022 [acceso 20/03/2023]. Disponible en: https://apps.who.int/gb/ebwha/pdf_files/WHA75-REC1/A75_REC1_Interactive_sp.pdf
21. World Health Organization (WHO). Guidance for conducting a country COVID-19 intra-action review (IAR); 2020 [acceso 20/06/2023]. Disponible en: https://iris.who.int/bitstream/handle/10665/333419/WHO-2019-nCoV-Country_IAR-2020.1-eng.pdf
22. Schöning V, Liakoni E, Drewe J Hammann F. Automatic identification of risk factors for SARS-CoV-2 positivity and severe clinical outcomes of COVID-19 using Data Mining and Natural Language Processing. medRxiv. 2021. DOI: https://doi.org/10.1101/2021.03.25.21254314
23. Estevanell-Valladares EL, Estevez-Velarde S, Piad-Morffis A, Gutierrez Y, Montoyo A, Muñoz R, et al. Knowledge Discovery in COVID-19 Research Literature. En: Mitkov R, Angelova G (eds). Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021). Held Online: INCOMA Ltd; 2021 [acceso 16/12/2022]. pp. 402-10. Disponible en: https://aclanthology.org/2021.ranlp-1.46/
24. Medina Matute VH, Corrales Beltrán SH, Llano Casa AC, Quinatoa Arequipa EE, Quisaguano Collaguazo LR. La calidad en el desarrollo del software. Editorial Internacional RUNAIKI; 2022 [acceso 16/11/2023] pp. 1-122. Disponible en: https://runaiki.es/index.php/runaiki/article/view/53
25. World Health Organization (WHO). The Technical Advisory Group on SARS-CoV-2 Virus Evolution/TAG-VE. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. Geneva: WHO; 2021 [acceso 22/10/2022]. Disponible en https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
26. Guzmán MG, Pérez L, Tejero Y, Mederos D, Aguado ME, Pintos Y, et al. Emergence and evolution of SARS-CoV-2 genetic variants during the Cuban epidemic. J Clin Virol Plus. 2022;2(4):100104. DOI: https://doi.org/10.1016/j.jcvp.2022.100104
27. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data – from vision to reality. Eurosurveillance. 2017;22(13):30494. DOI: https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
28. Organización de Naciones Unidas (ONU). COVID-19: La ONU presenta la Estrategia Global de Vacunación para alcanzar al 40% de la población a fin de año. Ginebra: ONU; 2021 [acceso 14/08/2023]. Disponible en: https://news.un.org/es/story/2021/10/1498032
29. Lage Dávila A. La Osadía de la Ciencia. La Habana: Editorial Academia; 2018 [acceso 17/07/2023]. Disponible en: https://www.clacso.org.ar/libreria-latinoamericana/contador/sumar_pdf.php?id_libro=1735
30. García-Holgado A, García-Peñalvo FJ. Gestión del conocimiento abierto mediante ecosistemas tecnológicos basados en soluciones Open Source. En: Merlo Vega JA (ed.), Ecosistemas del Acceso Abierto. Salamanca: Ediciones Universidad de Salamanca; 2018 [acceso 16/12/2023]. pp. 147-60. Disponible en: https://gredos.usal.es/handle/10366/138589
31. Villasana Arreguín LM, Hernández García P, Ramírez Flores E. La gestión del conocimiento, pasado, presente y futuro: Una revisión de la literatura. Trasc Contab Gestión. 2021 [acceso 16/10/2023];6(18):53-65. Disponible en: https://trascender.unison.mx/index.php/trascender/article/view/128
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Suset Isabel Oropesa Fernández, María Guadalupe Guzmán Tirado, Vivian Kourí Cardellá, Sonia Resik Aguirre, Pedro Mas Bermejo, Francisco Durán García, Juan Carlos Millán Marcelo, Marta Castro Peraza, Jorge Fraga Nodarse, Madelyn García Martínez, Ana Beatriz Pérez Díaz, Beatriz Sierra Vázquez, Licel Rodríguez Lay, Daniel González Rubio, Osvaldo Castro Peraza, Alfonso Ali Herrera, Isabel Martínez Motas, Yosiel Molina Gómez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Licencia Creative Commons
La Revista Cubana de Medicina Tropcial se encuentra bajo una
Este sitio está bajo Licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.