Microbiological surveillance of emerging and reemerging bacterial enteropathogens in Cuba
Keywords:
Vibrio cholerae, Vibrio cholerae O1, Escherichia coli, Aeromonas, Plesiomonas, epidemiological monitoring, Cuba.Abstract
Introduction: Microbiological surveillance and epidemiological control of acute diarrheal diseases caused by contaminated water and food are particularly important in developing countries. Shortages of clean water, poor sanitation systems, armed conflicts, natural phenomena, and migration generally cause extreme situations, that trigger epidemic outbreaks.
Objective: Summarize the diagnostic strategies developed at the National Reference Laboratory for Acute Diarrheal Diseases of the Pedro Kourí Tropical Medicine Institute for the diagnostic confirmation of emerging and re-emerging bacterial enteropathogens and their results.
Development: A compilation was made of the strategies developed for the diagnostic confirmation of emerging and re-emerging enterobacterial agents, as well as the real-time reporting of important health events caused by them in Cuba. The algorithms for microbiological surveillance as well as for phenotypic, molecular and genetic characterization were described. These algorithms were used in four studies related to the confirmation of bacterial enteropathogens as causative agents of outbreaks in Cuba from 1998 to 2015. The results led to the first national and international reports of new Plesiomonas sp. serogroups: O93, O94, O95, and O96; Plesiomonas sp. serotypes: O17:H11; O11:H2; O23:H1a1c, and O57:H3; diarrheagenic E. coli pathotypes: STEC O157:H7; and the prototype of the 7th pandemic: V. cholerae O1, serotype Ogawa, biotype El Tor.
Conclusions: The effectiveness of the employed strategy was confirmed with the implementation of conventional diagnostic techniques, molecular epidemiology and genomic methods. Greater depth, scope, coverage and immediacy in the results were achieved. This presupposes the new paradigm of international certification of results in the face of these types of events with an impact on public health.
Downloads
References
1. Davies HG, Bowman C, Luby SP. Cholera—management and prevention. J Infect. 2017;74:S66-S73. DOI: https://doi.org/10.1016/s0163-4453(17)30194-9
2. Botta R, Asche F, Borsum JS, Camp EV. A review of global oyster aquaculture production and consumption. Mar Policy. 2020;117:103952. DOI: https://doi.org/10.1007/s41208-023-00558-1
3. D’Mello-Guyett L, Gallandat K, Van den Bergh R, Taylor D, Bulit G, Legros D, et al. Prevention and control of cholera with household and community water, sanitation and hygiene (WASH) interventions: a scoping review of current international guidelines. PLOS One. 2020;15:e0226549. DOI: https://doi.org/10.1371/journal.pone.0226549
4. Kanungo S, Azman AS, Ramamurthy T, Deen J, Dutta S. Cholera. Lancet. 2022;399:1429-40. DOI: https://doi.org/10.1016/s0140-6736(22)00330-0
5. Ramamurthy T, Pragasam AK, Taylor-Brown A, Vasudeman K, Das B, Srivastava SK, et al. Vibrio cholerae O139 genomes provide a clue to why it may have failed to usher in the eighth cholera pandemic. Nat Commun. 2022;13:3864. DOI: https://doi.org/10.1038/s41467-022-31391-4
6. Balasubramanian D, Murcia S, Ogbunugafor CB, Gavilan R, Almagro-Moreno S. Cholera dynamics: lessons from an epidemic. J Med Microbiol. 2021;20:106. DOI: https://doi.org/10.1099/jmm.0.001298
7. Gonzalez-Avila LU, Loyola-Cruz MA, Hernández-Cortez C, Bello-López JM, Castro-Escarpulli G. Colistin. Resistance in Aeromonas spp. Int J Mol Sci. 2021;22:5974. DOI: https://doi.org/10.3390/ijms22115974
8. Pokhrel BM, Thapa N. Prevalence of Aeromonas in different clinical and water samples with special references to gastroenteritis. Nepal Med Coll J. 2004;6:139-43. DOI: https://doi.org/10.1159/000098248
9. Bravo L, Monté R, Zorrilla C, Padilla M. Aplicación del método del Hisopo de Moore para el aislamiento de Aeromonas. Rev Cubana Med Trop. 1989 [acceso 26/05/2023];41(3):413-8. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/lil-85555
10. Bravo L, Monté R, Martínez R, García B. Determinación de especies de Aeromonas en aguas y alimentos. Rev Cubana Aliment Nutr. 1992;6(2):108-11.
11. Bravo Fariñas L, San Germán Suárez S, Fernández Abreu A, Ramírez Alvarez M, Morier Díaz L, et al. Factores de virulencia en cepas de Aeromonas aisladas de pacientes con enfermedad diarreica aguda en Cuba. Rev Cubana Med Trop. 2008 [acceso 26/05/2023];60(2):130-35. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602008000200005
12. Fernández Abreu A, Bravo Fariñas L, Ramírez Alvarez M, Fernández Andreu C, Ledo Ginarte Y, Correa Martínez Y, et al. Aislamiento e identificación de Aeromonas y Plesiomonas en el embalse “Niña Bonita”, Ciudad de La Habana, Cuba. Rev Cubana Med Trop. 2008 [acceso 13/02/2023];60(2):184-6. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602008000200013
13. Bravo L, Monté R, Alfonso V, Cabrera N, Gómez M, Hernández R, et al. Nuevas especies de Aeromonas aisladas en Cuba. Rev Cubana Med Trop. 1995 [acceso 13/02/2023];47(3):215-6. Disponible en: https://pesquisa.bvsalud.org/portal/resource/estargetblank/cum-8221
14. Vázquez Piloto A, González Ramírez AN, Cruz Robaina JC, Monte Boada RJ, Bravo Fariñas L, Alvaraz Medina AL. Neumonía por Aeromonas hydrophila asociada a un accidente de tránsito. Rev Cubana Med Trop. 1996 [acceso 13/02/2023];48(1):50-2. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07601996000100009
15. Bravo L, Cabrera L. Factores de virulencia asociados a la enteropatogenicidad en cepas de Aeromonas. Rev Cubana Med Trop. 2005;57(2):54-7.
16. Owusu M, Nkrumah B, Mensah EK, Lamptey J, Acheampong G, Sambian D, et al. Surveillance and laboratory collaboration in response to an outbreak of Vibrio parahaemolyticus, Plesiomonas shigelloides, and Aeromonas hydrophila in Sekondi‑Takoradi, Ghana: a case series. J Med Case Reports. 2022;16(53). DOI: https://doi.org/10.1186/s13256-021-03243-0
17. González-Rey C, Siitonen A, Pavlova A, Ciznar I, Svenson SB, Krovacek K. Molecular evidence of Plesiomonas shigelloides as a possible zoonotic agent. Folia Microbiol. 2011;56:178-84. DOI: https://doi.org/10.1007/s12223-011-0032-2
18. Bravo L, Cabrera R, Ramírez M, Llop A, Fernández A, García B, et al. Plesiomonas shigelloides una Vibrionaceae en quien pensar. Rev Cubana Med Trop. 2000 [acceso 12/02/2023];52(1):10-4. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602000000100002
19. Águila Sánchez A, Bernedo Navarro R, Falcón Márquez R, Fonseca Quintana M, Sarmiento Pérez L, Domínguez Guilarte O, et al. Enterohemorrhagic Escherichia coli O157:H7 Isolates From Children in Cuba. Pediatr Infect Dis J. 2008;27(12):1122-3. DOI: https://doi.org/10.1097/inf.0b013e31818a8981
20. Alarcón MA, Escobar GS, Palma ME, Chang AF, Guaminga JR, Tutillo DO. Escherichia coli O157:H7 en carne molida comercializada en los mercados de Guayaquil. J Am Health. 2020;3(2):159-68. DOI: https://doi.org/10.37958/jah.v3i2.45
21. Vásquez-Guerrero J. Enteroparásitos y factores de riesgo relacionados en frutas y hortalizas de los expendios públicos y privados de la ciudad de Cartagena. [Tesis de grado] [Cartagena De Indias]: Universidad de San Buenaventura; 2015 [acceso 31/05/2023]. Disponible en: http://hdl.handle.net/10819/2865
22. Blackburn CW, McClure PJ. Foodborne pathogens. Hazards, risk analysis and control. 2nd. Ed. Cambridge: CRC Press, Woodhead Publishing Ltd.; 2002. p. 3-12.
23. Rivero MA, Padola NL, Etcheverría AI, Parma AE. Escherichia coli enterohemorrágica y síndrome urémico hemolítico en Argentina. Medicina. 2004 [acceso 12/02/2023];64(4):352-6. Disponible en: https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0025-76802004000400014
24. Byrne L, Adams N, Jenkins C. Association between Shiga toxin–producing Escherichia coli O157:H7 stx gene subtype and disease severity, England, 2009-2019. Emerg Infect Dis. 2020;26(10). DOI: https://doi.org/10.3201/eid2610.200319
25. Tyler SD, Johnson WM, Lior H, Wang G, Rozee KR. Identification of verotoxin type 2 variant B subunit genes in Escherichia coli by the polymerase chain reaction and restriction fragment length polymorphism analysis. J Clin Microbiol. 1991;29(7):1339-43. DOI: https://doi.org/10.1128/jcm.29.7.1339-1343.1991
26. Paton AW, Paton JC. Detection and characterization of Shiga toxigenic Escherichia coli by using Multiplex PCR assay for stx1, stx2, eaeA, enterohemorrhagic E. coli HlyA, rfbO111, and rfbO157. J Clin Microbiol. 1998;36:598-602. DOI: https://doi.org/10.1128/jcm.36.2.598-602.1998
27. Karch H, Meyer T. Single primer pair for amplifying segments of distinct Shiga-like-toxin genes by polymerase chain reaction. J Clin Microbiol. 1989;27(12):2751. DOI: https://doi.org/10.1128/jcm.27.12.2751-2757.1989
28. Águila Sánchez A, Rodríguez A, Fernández Abreu A, Cruz Infante Y, Bravo Fariñas L, Hernández Martínez JL, et al. Escherichia coli diarrogénicos, identificación de patotipos y fenotipos de resistencia antimicrobiana en aislados cubanos. Rev Cubana Med Trop. 2020 [acceso 24/04/2023];72(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602020000100008
29. Rosado-Porto D, Bonivento-Calvo J, Salcedo-Mendoza S, Molina-Castillo A, Maestre-Serrano R, García ADC. Determinación de E. coli biotipo 1 y E. coli O157:H7 en canal de carne bovina en plantas de beneficio del departamento del Atlántico (Colombia). Rev Inv Vet Perú. 2021;32(3). DOI: https://doi.org/10.15381/rivep.v32i3.18476
30. Roldán ML, Chinen I, Otero JL, Miliwebsky ES, Alfaro N, Burns P, et al. Aislamiento, caracterización y subtipificación de cepas de Escherichia coli O157:H7 a partir de productos cárnicos y leche. Rev Argentina Microbiol. 2007 [acceso 26/05/2023];39(2):113-9. Disponible en: https://www.redalyc.org/pdf/2130/213016791012.pdf
31. Leotta GA, Chinen I, Epszteyn S, Miliwebsky E, Melamed IC, Motter M, et al. Validación de una técnica de PCR múltiple para la detección de Escherichia coli productor de toxina Shiga. Rev Argentina Microbiol. 2005 [acceso 13/02/2023];37:1-10. Disponible en: https://www.redalyc.org/pdf/2130/213016778001.pdf
32. World Health Organization (WHO). Cholera 2018. Weekly Epidemiol Rec. 2019 [acceso 25/04/2023];94(48):561-80. Disponible en: https://reliefweb.int/report/world/weekly-epidemiological-record-wer-29-november-2019-vol-94-no-48-561-580-enfr
33. Chowdhury G, Senapati T, Das B, Kamath A, Pal D, Bose P, et al. Laboratory evaluation of the rapid diagnostic tests for the detection of Vibrio cholerae O1 using diarrheal samples. PLOS Negl Trop Dis. 2021;15(6):e0009521. DOI: https://doi.org/10.1371/journal.pntd.0009521
34. Chatterjee S, Haldar S. Vibrio Related Diseases in Aquaculture and Development of Rapid and Accurate Identification Methods. J Marine Sci: Res Dev. 2012;S1:002. DOI: https://doi.org/10.4172/2155-9910.S1-002
35. Rivera ING, Lipp EK, Gil A, Choopun N, Huq A, Colwell RR. Method of DNA extraction and application of Multiplex polymerase chain reaction to detect toxigenic V. cholerae O1 and O139 from aquatic ecosystems. Environ Microbiol. 2003;5(7):599-606. DOI: https://doi.org/10.1046/j.1462-2920.2003.00443.x
36. Chun J, Huq A, Colwell RR. Analysis of 16S-23S rRNA Intergenic Spacer Regions of Vibrio cholerae and Vibrio mimicus. App Environ Microbiol. 1999;65(5):2202-8. DOI: https://doi.org/10.1128/AEM.65.5.2202-2208.1999
37. Lopez-Canovas L, Riveron Rojas AM, Higginson-Clarke D, Sanchez-Alonso A, Orozco E, Arencibia O, et al. Process for rapid microorganism typing and associated kit reagent. Patente europea: Europa EP1350852, 2003.
38. Arakawa E, Murase T, Matsushita S, Shimada T, Yamai S, Ito T, et al. Pulsed-Field Gel Electrophoresis-Based Molecular Comparison of Vibrio cholerae O1 Isolates from Domestic and Imported Cases of Cholera in Japan. J Clin Microbiol. 2000;38(1):424-6. DOI: https://doi.org/10.1128/JCM.38.1.424-426.2000
39. Domman D, Quilici ML, Dorman MJ, Njamkepo E, Mutreja A, Mather AE, et al. Integrated view of Vibrio cholerae in the Americas. Science. 2017;358(6364):789-93. DOI: https://doi.org/10.1126/science.aao2136
40. Kumar P, Yadav P, Ingole KV, Jaiswal RK, Khalid NS, Deshmukh DG, et al. Emergence of Haitian variant genotype and altered drug susceptibility in Vibrio cholerae O1 El Tor-associated cholera outbreaks in Solapur, India. Int J Antimicrob Agents. 2020;55(3):105853. DOI: https://doi.org/10.1016/j.ijantimicag.2019.11.010
41. Santoriello FJ, Michel L, Unterweger D, Pukatzki S. Pandemic Vibrio cholerae shuts down site-specific recombination to retain an interbacterial defence mechanism. Nat Commun. 2020;11:6246. DOI: https://doi.org/10.1038/s41467-020-20012-7
42. Piarroux R, Barrais R, Faucher B, Haus R, Piarroux M, Gaudart J, et al. Understanding the cholera epidemic, Haiti. Emerg Infect Dis. 2011;17(7):1161-8. DOI: https://doi.org/10.3201/eid1707.110059
43. Ivers LC, Farmer P, Almazor CP, Léandre F. Five complementary interventions to slow cholera: Haiti. Lancet. 2010;376(9758):2048-51. DOI: https://doi.org/10.1016/s0140-6736(10)62243-x
44. Lam C, Octavia S, Reeves P, Wang L, Lan R. Evolution of Seventh Cholera Pandemic and Origin of 1991 Epidemic, Latin America. Emerg Infect Dis. 2010;16(7):1130-2. DOI: https://doi.org/10.3201/eid1607.100131
45. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, et al. The Origin of the Haitian Cholera Outbreak Strain. N Engl J Med. 2011;364(1):33-42. DOI: https://doi.org/10.1056/nejmoa1012928
46. Jubyda FT, Nahar KS, Barman I, Johura FT, Islam MT, Sultana M, et al. Vibrio cholerae O1 associated with recent endemic cholera shows temporal changes in serotype, genotype, and drug-resistance patterns in Bangladesh. Gut Pathogens. 2023;15:17. DOI: https://doi.org/10.1186/s13099-023-00537-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Adalberto Aguila Sánchez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Licencia Creative Commons
La Revista Cubana de Medicina Tropcial se encuentra bajo una
Este sitio está bajo Licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.