Evaluation of LED Fluorescence Microscopy for The Diagnosis of Pulmonary Tuberculosis in Cuba

Authors

  • Maria Rosarys Martínez Romero Instituto de Medicina Tropical "Pedro Kourí" (IPK), Laboratorio Nacional de Referencia e Investigaciones de Tuberculosis, Lepra y Micobacterias. La Habana https://orcid.org/0000-0001-5947-732X
  • Nancy Pedrera Pozo Unidad de Higiene y Epidemiología de San Cristóbal, Artemisa. https://orcid.org/0000-0002-2314-2912
  • Grechen García León Instituto de Medicina Tropical "Pedro Kourí" (IPK), Laboratorio Nacional de Referencia e Investigaciones de Tuberculosis, Lepra y Micobacterias, La Habana https://orcid.org/0000-0002-9593-6711
  • Misleidis Sardiñas Aragón Instituto de Medicina Tropical "Pedro Kourí" (IPK), Laboratorio Nacional de Referencia e Investigaciones de Tuberculosis, Lepra y Micobacterias, La Habana https://orcid.org/0000-0002-9798-5031
  • Lilian Maria Mederos Cuervo Instituto de Medicina Tropical "Pedro Kourí" (IPK), Laboratorio Nacional de Referencia e Investigaciones de Tuberculosis, Lepra y Micobacterias, La Habana https://orcid.org/0000-0001-7431-2216
  • Raúl Díaz Rodríguez Instituto de Medicina Tropical "Pedro Kourí" (IPK), Laboratorio Nacional de Referencia e Investigaciones de Tuberculosis, Lepra y Micobacterias, La Habana https://orcid.org/0000-0001-9107-124X

Keywords:

LED fluorescence microscopy, tuberculosis, bacilloscopy.

Abstract

Introduction: Light-emitting diode fluorescence microscopy (LED FM) has been recommended by the World Health Organization to diagnose tuberculosis since 2011.

Objective: To evaluate the performance of LED FM for the diagnosis of pulmonary tuberculosis at the National Reference Laboratory for Tuberculosis, Leprosy, and Mycobacteria (NRL-TBLM) in Cuba.

Methods: LED FM evaluation was conducted on sputum samples from patients with suspected tuberculosis at the NRL-TBLM from February to July 2018. Due to the low prevalence of tuberculosis in Cuba, it was followed the methodology used by Minion and others.

Results: LED FM identified 28/208 (13.5%) bacilli in smears from patients with suspected tuberculosis, 10 more than Zielh Neelsen staining (18/208). Five of the positive cases identified by fluorescent microscopy were people living with HIV/AIDS, and a higher number of paucibacillary smears (six) were identified, four of which were from people living with HIV/AIDS. Sensitivity (81.82%) and Youden index (0.81) were higher than those obtained by Zielh Neelsen staining (54.55% and 0.55%, respectively). The calculated area under the curve was higher for LED FM (0.8966).

Conclusions: This study confirms that LED FM has higher sensitivity. Its inclusion in the tuberculosis diagnostic algorithm will increase the detection of cases of smear-positive pulmonary tuberculosis. Its implementation in selected laboratories within the network will contribute to progress towards the elimination of the disease within the framework of the Global Tuberculosis Elimination Strategy by 2035.

Downloads

Download data is not yet available.

Author Biography

Maria Rosarys Martínez Romero, Instituto de Medicina Tropical "Pedro Kourí" (IPK), Laboratorio Nacional de Referencia e Investigaciones de Tuberculosis, Lepra y Micobacterias. La Habana

Médico Especialista de II Grado en Microbiología, Investigador y Profesor auxiliar. Master en Ciencias

References

Global tuberculosis report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. Disponible en: https://www.who.int/teams/global-tuberculosis-programme/tb-reports

Martínez-Romero MR, Pedrera-Pozo N, García-León GC, Sardiñas-Aragón M, Mederos-Cuervo LM, Díaz-Rodríguez R. Validación de la microscopía de fluorescencia LED para el diagnóstico de tuberculosis en Cuba. Rev. CENIC Cienc. Biol. 2021;52(3):259-66. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2221-24502021000300259&lng=es

Vallego VP, Rodríguez JC, Searle MA, Farga CV. Ensayo Xpert/RIF en el diagnóstico de tuberculosis. Rev Chil Enferm Respir 2015;31(2):127-31. DOI: http://dx.doi.org/10.4067/S0717-73482015000200010

Imaz M, Allassia S, Aranibar M, Gunia A, Poggi S, Togneri A. Performance of LED fluorescence microscopy for the detection of acid-fast bacilli from respiratory samples in peripheral laboratories in Argentina. Biomedica 2017;37(2):164-74. DOI: https://dx.doi.org/10.7705/biomedica.v37i2.3276

Goel S, Pandey R, Kumar M, Kankaria A, Khaneja, R. Impact of introducing light-emitting diode fluorescence microscopy services for diagnosis of pulmonary tuberculosis under Revised National Tuberculosis Control Program India. Lung India 2018;35:307-11. DOI: https://doi.org/10.4103%2Flungindia.lungindia_475_17

World Health Organization. Fluorescent light-emitting diode (LED) microscopy for diagnosis of tuberculosis. Policy statement 2011. Geneva, Switzerland. WHO/HTM/TB/2011.8. Disponible en: https://apps.who.int/iris/handle/10665/44602

Díaz-Rodríguez R, Lemus-Molina D, Martínez-Romero MR. La tuberculosis en Cuba en tiempos de COVID-19: ¿retroceso en su plan de eliminación? Rev Cubana Med Trop. 2020;72(3):e585. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602020000300014&lng=es

Tuberculosis en las Américas. Informe regional 2020. Washington, D.C.: Organización Panamericana de la Salud; 2021. Licencia: CC BY-NC-SA 3.0 IGO. DOI: https://doi.org/10.37774/9789275324479

OMS. Perfil de tuberculosis: Cuba, 2020. Disponible en: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&lan=%22ES%22&iso2=%22CU%22

Minion J, Pai M, Ramsay A, Menzies D, Greenaway C. Comparison of LED and conventional fluorescence microscopy for detection of acid-fast bacilli in a low-incidence setting. PLoS ONE. 2011;6(7). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21811622

ORAS – CONHU. Manual para el diagnóstico bacteriológico de la tuberculosis. Parte 1: Manual de actualización de la baciloscopia, Lima, Perú. 2018. Disponible en: https://www.paho.org/es/documentos/manual-para-diagnostico-bacteriologico-tuberculosis-parte-1-manual-actualizacion

Ministerio de Salud Pública. Resolución Ministerial 277/2014. Programa Nacional de Control de la Tuberculosis. Manual de normas y procedimientos. La Habana: Editorial Ciencias Médicas. 2015. Disponible en: https://www.sld.cu/galerias/pdf/sitios/tuberculosis/programa_2015.pdf

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-74.

Marzouk M, Ferjani A, Dhaou M, Ali MH, Hannachi N, Boukadida J. Comparison of LED and conventional fluorescence microscopy for detection of acid-fast bacilli in an area with high tuberculosis incidence. Diagn Microbiol Infect Dis. 2013;76(3):306-8. DOI : https://doi.org/10.1016/j.diagmicrobio.2013.03.023

Goel S, Pandey R, Kumar M, Kankaria A, Khaneja, R. Impact of introducing light-emitting diode fluorescence microscopy services for diagnosis of pulmonary tuberculosis under Revised National Tuberculosis Control Program India. Lung India. 2018;35:307-11. https://doi.org/10.4103%2Flungindia.lungindia_475_17

Kuhn W, Armstrong D, Atteberry S, Dewbrey E, Smith D, Hooper N. Usefulness of the Paralens™ fluorescent microscope adaptor for the identification of mycobacteria in both field and laboratory settings. Open Microbiol J. 2010;4:30-3. DOI: https://doi.org/10.2174%2F1874285801004010030

Chaidir L, Parwati I, Annisa J, Muhsinin S, Meilana I, Alisjahbana B, et al. Implementation of LED fluorescence microscopy for diagnosis of pulmonary and HIV‑associated tuberculosis in a hospital setting in Indonesia. PLoS One. 2013;8(4):e61727. DOI: https://doi.org/10.1371/journal.pone.0061727

Xia H, Song YY, Zhao B, Kam K-M, O’Brien RJ, Zhang Z, et al. Multicentre evaluation of Ziehl-Neelsen and lightemitting diode fluorescence microscopy in China. Int J Tuber Lung Dis. 2013;17:107-12. DOI: https://dx.doi.org/10.5588/ijtld.12.0184

Reza LW, Satyanarayna S, Enarson DA, Kumar AMV, Sagili K, Kumar S, et al. LED-Fluorescence microscopy for diagnosis of pulmonary tuberculosis under programmatic conditions in India. PLoS ONE. 2013;8:e75566. DOI: https://doi.org/10.1371/journal.pone.0075566

Gelalcha AG, Kebede A, Hassen Mamo H. Light-emitting diode fluorescent microscopy and Xpert MTB/RIF® assay for diagnosis of pulmonary tuberculosis among patients attending Ambo hospital, west central Ethiopia. BMC Infect Dis. 2017;17:613. DOI: https://doi.org/10.1186/s12879-017-2701-5

Ngabonziza SCJ, Ssengooba W, Mutua F, Torrea G, Dushime A, Gasana M, et al. Diagnostic performance of smear microscopy and incremental yield of Xpert in detection of pulmonary tuberculosis in Rwanda. BMC Infect Dis. 2016;16(1):660. DOI: https://doi.org/10.1186/s12879-016-2009-x

Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006;6(9):570-81. DOI: https://doi.org/10.1016/s1473-3099(06)70578-3

Shenai S, Minion J, Vadwai V, Tipnis T, Shetty S, Salvi A, et al. Evaluation of light emitting diode-based fluorescence microscopy for the detection of mycobacteria in a tuberculosis-endemic region. Int J Tuberc Lung Dis. 2011;15(4):483-8. DOI: https://doi.org/10.5588/ijtld.10.0229

Chang WE, Page AL, Bonnet M. Light-emitting diode fluorescence microscopy for tuberculosis diagnosis: a meta-analysis. Eur Respir J. 2016;47(3):929-37. DOI: https://doi.org/10.1183/13993003.00978-2015

Cerda J, Cifuentes L. Uso de curvas ROC en investigación clínica. Rev Chil Infect. 2012;29(2):138-41. DOI: https://dx.doi.org/10.4067/S0716-10182012000200003

Published

2024-07-24

How to Cite

1.
Martínez Romero MR, Pedrera Pozo N, García León G, Sardiñas Aragón M, Mederos Cuervo LM, Díaz Rodríguez R. Evaluation of LED Fluorescence Microscopy for The Diagnosis of Pulmonary Tuberculosis in Cuba. Rev Cuba Med Tropical [Internet]. 2024 Jul. 24 [cited 2025 Apr. 3];76. Available from: https://revmedtropical.sld.cu/index.php/medtropical/article/view/980

Issue

Section

Artículos originales