Sensitivity to cycloheximide of air fungi from Vedado, Havana, Cuba

Authors

Keywords:

actidiona, fungal isolates, atmosphere, culture medium.

Abstract

Introduction: Cycloheximide inhibits the growth of non-dermatophyte filamentous fungi that usually grow faster in vitro. However, some environmental fungi have the property of growing in its presence.

Objective: To determine the growth property, in the presence of cycloheximide, of filamentous fungi collected previously from the air of Vedado in Havana, Cuba.

Methods: A total of 175 fungal isolates collected previously from the air of an urban area in Havana in 2019 were seeded on Sabouraud Dextrose Agar medium with cycloheximide and without cycloheximide. Colony diameters were measured after seven days of incubation at 28°C.

Results: Of the collected isolates, 52.6% grew abundantly (> 3mm); 18.3% grew limitedly (< 3mm), and the rest (29.1%) did not grow. Over 70% of isolates of Aspergillus, Cladosporium, Curvularia, and Penicillium were able to grow in the presence of cycloheximide. The percentage of isolates that grew in the presence of cycloheximide each month varied.

Conclusions: A high percentage of environmental fungi with the property of growing in the presence of cycloheximide was identified with a variable distribution during the study year. Aspergillus isolates prevailed.

Downloads

Download data is not yet available.

References

Leach BE, Ford JH, Whiffen AJ. Actidione, an antibiotic from Streptomyces griseus. J. Am. Chem. Soc. 1947;69(2):474-5. DOI: https://doi.org/10.1021/ja01194a519

Syuhada NH, Merican F, Zaki S, Broady PA, Convey P, Muangmai N. Strong and widespread cycloheximide resistance in Stichococcus-like eukaryotic algal taxa. Sci. Rep. 2022;12(1):1. DOI: https://doi.org/10.1038/s41598-022-05116-y

Pereira RS, Dos Santos HD, Moraes OS, Júnior DP, Hahn RC. Children’s public health: Danger of exposure to pathogenic fungi in recreational places in the middle-west region of Brazil. Journal of infection and public health. 2020;13(1):51-7. DOI: https://doi.org/10.1016/j.jiph.2019.06.018

Sutton DA. Specimen collection, transport, and processing: mycology. Manual of clinical microbiology. 2003;2:1659-67. DOI. https://doi.org/10.1128/9781555817381.ch114

Bhosale NK, Prabha R, Munuswamy R, Pramodhini S, Easow JM. A Comparative Study on the Phenotypic Versus Molecular Identification of Clinical Dermatophytes. J Pure Appl Microbiol. 2022. DOI: https://doi.org/10.22207/JPAM.16.2.40

Mendek S, Lugović-Mihić L, Ferček I, Japundžić I, ? itum M, Abram M. The Prevalence of Onychomycosis in the Zagreb Area–the Role of Sabouraud Agar without Cycloheximide in Diagnosis and Therapy. Acta Clínica Croática. 2018;57(4.):726-34. DOI: https://doi.org/10.20471/acc.2018.57.04.15

Saunte DM, Hare RK, Jørgensen KM, Jørgensen R, Deleuran M, Zachariae CO, et al. Emerging terbinafine resistance in Trichophyton: clinical characteristics, squalene epoxidase gene mutations, and a reliable EUCAST method for detection. Antimicrobial agents and chemotherapy. 2019;63(10):e01126-19. DOI: https://doi.org/10.1128/AAC.01126-19

Dal Pizzol M, Freitas EC, Locatelli C, Guareze F, Reginatto P, Machado G, et al. Antifungal efficacy and safety of cycloheximide as a supplement in optisol-GS. Drug Design, Development and Therapy. 2021:2091-8. DOI: https://doi.org/10.2147/DDDT.S298059

Park JH, Oh J, Song JS, Kim J, Sung GH. Bisifusarium delphinoides, an emerging opportunistic pathogen in a burn patient with diabetes mellitus. Mycobiology. 2019;47(3):340-5. DOI: https://doi.org/10.1080/12298093.2019.1628521

Araya S, Tesfaye B, Fente D. Epidemiology of dermatophyte and non-dermatophyte fungi infection in Ethiopia. Clinical, Cosmetic and Investigational Dermatology. 2020:291-7. DOI: http://doi.org/10.2147/CCID.S246183

Pereira RS, Dos Santos HD, Moraes OS, Júnior DP, Hahn RC. Children’s public health: Danger of exposure to pathogenic fungi in recreational places in the middle-west region of Brazil. Journal of infection and public health. 2020;13(1):51-7. DOI: https://doi.org/10.1016/j.jiph.2019.06.018

Salkin IF. Adaptation to cycloheximide: in vitro studies with filamentous fungi. Can. J. Microbiol. 1975;21(9):1413-9. DOI: https://doi.org/10.1139/m75-211

Dixon DM, Shadomy HJ, Shadomy S. Dematiaceous fungal pathogens isolated from nature. Mycopathologia. 1980;70(3):153-61. DOI: https://doi.org/10.1007/BF00443026

Singh RS, Prashar M. Studies on Rhizopus rot of peach and its control. J. Plant Pathol. 1984;14(2):185-7.

FilipelloMarchisio V, Cassinelli C, Piscozzi A, Tullio V, Mischiati P. A preliminary survey of cycloheximide resistant airborne fungi in Turin, Italy. Mycopathologia. 1993;123(1):1-8. DOI: https://doi.org/10.1007/BF01103482

Almaguer Chávez, M, Rojas -Flores, T i. Aeromicota viable de la atmósfera de La Habana, Cuba. NACC. 2013 [acceso 26/03/2023];20. Disponible en: https://revistas.usc.gal/index.php/nacc/article/view/1404

D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457-61. DOI: https://doi.org/10.1038/nature10388

Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018;30;9:2928. DOI: https://doi.org/10.3389/fmicb.2018.02928.

Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016;4(2):4-2. DOI: https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

Wingfield BD, Wingfield MJ, Duong TA. Molecular basis of cycloheximide resistance in the Ophiostomatales revealed. Curr. Genet. 2022:1-0. DOI: https://doi.org/10.1007/s00294-022-01235-1

Griffin DH, Sullia SB, Salkin IF. Resistance of selected saprobic and zoopathogenic fungi to cycloheximide. Microbiology. 1978;105(1):127-34. DOI: https://doi.org/10.1099/00221287-105-1-127

Crouzet M, Perrot M, Nogueira M, Bégueret J. Genetic and biochemical analysis of cycloheximide resistance in the fungus Podospora anserina. Biochem. Genet. 1978;16(3):271-86. DOI: https://doi.org/10.1007/BF00484084

Yamada T, Yaguchi T, Salamin K, Guenova E, Feuermann M, Monod M. Mfs1, a pleiotropic transporter in dermatophytes that plays a key role in their intrinsic resistance to chloramphenicol and fluconazole. Journal of Fungi. 2021;7(7):542. DOI: https://doi.org/10.3390/jof7070542

Sullia SB, Maria R. Acquired cycloheximide resistance in Neurospora crassa and Sclerotium rolfsii. Proceedings: Plant Sciences. 1985;95(6):417-27. DOI: https://doi.org/10.1007/BF03053680

Eerdmans MM, Amundson SA, Reinhart TA, Klein KK. Dominance Relationships of Cycloheximide Resistant Mutants of Schizophyllum commune Fr. J. Minn. Acad. Sci. 1990 [acceso 26/03/2023];55(3):21-4. Disponible en https://digitalcommons.morris.umn.edu/jmas/vol55/iss3/7

Madhosingh Micales JA, Stipes RJ. Zearalenone production in Fusarium culmorum after transformation with DNA of F. graminearum. Plant Pathol. 1985;34(3):402-7. DOI: https://doi.org/10.1111/j.1365-3059.1985.tb01379.x

Fennessy D, Grallert A, Krapp A, Cokoja A, Bridge AJ. Extending the Schizosaccharomyces pombe Molecular Genetic Toolbox. PLOS ONE. 2014;9(5):e97683. DOI: https://doi.org/10.1371/journal.pone.0097683

Moniot M, Lavergne RA, Morel T. Hormographiella aspergillata: an emerging basidiomycete in the clinical setting? A case report and literature review. BMC Infect Dis. 2020;20:945. DOI: https://doi.org/10.1186/s12879-020-05679-z.

Traynor JD, Sardharwalla I, North J. Biochemical analysis of the role of cytoplasmic ribosomes of Coprinus cinereus in cycloheximide resistance. Microbiology. 1986;132(3):757-63. DOI: https://doi.org/10.1099/00221287-132-3-757

Weitzman I, Rosenthal SA, Shupack JL. A comparison between Dacllaria gallopava and Scolecobasidium humicola: First report of an infection in a tortoise caused by S. humicola. Sabouraudia. 1985; 23:287-93. DOI: https://doi.org/10.1080/00362178585380411

Levetin E, Horner WE, Scott JA, Barnes C, Baxi S, Chew GL, et al. Taxonomy of allergenic fungi. J. Allergy Clin. Immunol. Pract. 2016;4(3):375-85. DOI: https://doi.org/10.1016/j.jaip.2015.10.012

Kuehn HH, Orr GF. Tolerance of certain fungi to actidione and its use in isolation of Gymnoascaceae. Sabouraudia. 1962;1(4):220-9. DOI: https://doi.org/10.1080/00362176285190421

Yamada Y. RPD3 and UME6 are involved in the activation of PDR5 transcription and pleiotropic drug resistance in ρ 0 cells of Saccharomyces cerevisiae. BMC microbiology. 2021;21:1-9. DOI: https://doi.org/10.1186/s12866-021-02373-1

Orr GF. Keratinophilic fungi isolated from soils by a modified hair bait technique. Sabouraudia: J. Med. Vet. Mycol. 1969;7(2):129-34. DOI: https://doi.org/10.1080/00362177085190231

Labuda R, Bacher M, Rosenau T, Gasparotto E, Gratzl H, Doppler M, et al. Polyphasic Approach Utilized for the Identification of Two New Toxigenic Members of Penicillium Section Exilicaulis, P. krskae and P. silybi spp. nov. Journal of Fungi. 2021;7(7):557. DOI: https://doi.org/10.3390/jof7070557

Rippon JW. Medical mycology. The pathogenic fungi and the pathogenic actinomycetes. WB Saunders company; 1988. DOI: https://doi.org/10.1001/jama.1988.03410120140051

Abdel‐Hafez AI, El‐Sharouny HM. The occurrence of keratinophilic fungi in sewage sludge from Egypt. J. Basic Microbiol. 1990;30(2):73-9. DOI: https://doi.org/10.1002/jobm.3620300203

Ali-Shtayeh MS, Jamous RM, Abu-Ghdeib SI. Ecology of cycloheximide-resistant fungi in field soils receiving raw city wastewater or normal irrigation water. Mycopathologia. 1998;144(1):39-55. DOI: https://doi.org/10.1023/A:1006952926293

Calvo MA, Dronda MA, Castello R. Fungal spores in house dust. Ann Allergy. 1982;49:213-9.

Huseinovic A, van Dijk M, Vermeulen NP, van Leeuwen F, Kooter JM, Vos JC. Drug toxicity profiling of a Saccharomyces cerevisiae de ubiquitinase deletion panel shows that acetaminophen mimics tyrosine. Toxicology in Vitro. 2018;47:259-68. DOI: https://doi.org/10.1016/j.tiv.2017.12.007

Samant RS, Frydman J. Methods for measuring misfolded protein clearance in the budding yeast Saccharomyces cerevisiae. En: Methods in Enzymology. 2019;619:27-45. Academic Press. DOI: https://doi.org/10.1016/bs.mie.2018.12.039

Published

2024-07-24

How to Cite

1.
Almaguer Chávez M, Fernández-González M, Sánchez Espinosa KC, Abreu Rodríguez M. Sensitivity to cycloheximide of air fungi from Vedado, Havana, Cuba. Rev Cuba Med Tropical [Internet]. 2024 Jul. 24 [cited 2025 Apr. 1];76. Available from: https://revmedtropical.sld.cu/index.php/medtropical/article/view/969

Issue

Section

Artículos originales