Extract hydro-ethanolic of Thunbergia alata (Lamiales, Acanthaceae) as an alternative for the larval control of Aedes aegypti (Diptera, Culicidae)
Keywords:
arbovirus, invasive plants, biologic control.Abstract
Introduction: Aedes aegypti is the main vector of diseases such as dengue, Zika and chikungunya, which represent a serious public health problem in Asian and Latin American countries. Despite the various efforts made to control the vector, in recent decades Ae. aegypti has expanded its geographical distribution, causing continuous epidemics, so it is necessary to develop new control measures that help mitigate this problem.
Objective: To evaluate, under controlled laboratory conditions, the larvicidal activity of plant hydro-ethanolic extract of T. alata in the control of Ae. aegypti.
Methods: Using the percolation technique, the extraction of flowers from the plant was carried out. Subsequently, following the guide to evaluate larvicides proposed by the World Health Organization, different concentrations of crude extracts of T. alata were evaluated on third and fourth instar larvae of Ae. aegypti.
Results: It was observed that the crude extracts of T. alata had a lethal effect on Ae. aegypti. It was observed that the hydro-ethanolic extract of flowers, in a 50etOH:50H2O ratio, generated LC50, 90 and 99 of 8.35, 12.43 and 18.18%, respectively.
Conclusion: The flower extract of T. alata in a ratio of 50etOH:50H2O shows notable activity against Ae vector larvae Ae. aegypti.
Downloads
References
Santos LLM, de Aquino EC, Fernandes SM, Ternes YMF, Feres VCD. Dengue, chikungunya, and Zika virus infections in Latin America and the Caribbean: a systematic review. Rev Panam Salud PÚblica. 2023;47:e34. DOI: https://doi.org/10.26633/RPSP.2023.34
Bhatt S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): 504-7
World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva; 2009 [acceso 06/06/2023]. PMID: 23762963. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23762963
Cuartas DE, Martínez G, Caicedo DM, Garcés J, Ariza-Araujo Y, Peña M, Mendéz F. Distribución espacial de criaderos positivos y potenciales de Aedes aegypti. Biomédica. 2017;37(Supl. 2):59-66. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/3471
Quezada-Yaguachi W, Rodriguez A, Solís-Santoyo F, López-Solís A, Black IV W, Saavedra-Rodriguez K, et al. Comparison of Insecticide Resistance and Its Enzyme Mechanisms among Aedes aegypti Collected with Three Methods in a Dengue-Endemic City in Southern Mexico. Advances in Entomology. 2022;10:252-66. DOI: https://doi.org/10.4236/ae.2022.103018
Galavíz JD, Vega F, Cupul FG, Navarrete JL, Ruiz LE, Vargas MA, et al. Control químico y biológico de larvas de Aedes aegypti en la costa norte de Jalisco, México. Rev cubana Med Trop. 2016 [acceso 13/10/2022];68(2):111-24. Disponible en: https://www.medigraphic.com/pdfs/revcubmedtro/cmt-2016/cmt162a.pdf
Gómez W, Zapata G. Vector Control Strategies. En: Puerta H, Manrique P, editores. Mosquito Research-Recent Advances in Pathogen Interactions, Immunity, and Vector Control Strategies. London: IntechOpen; 2022 [acceso 13/10/2022]. Disponible en: https://www.intechopen.com/online-first/81929
Agrela IF, Hidalgo Y, Herrera F. Efecto larvicida de extractos metanólicos obtenidos de semillas y hojas de Persea americana (Laurales: Lauraceae) (aguacate) sobre Aedes aegypti (Diptera: Culicidae). Bol. Mal. Salud Amb. 2014;54(2):199-207.
Sierra JA, Gaviria B, Navarro R, Castaño M, Sánchez D, Marín D, et al. Historia, vida y poderes de una especie invasora: estrategia para su control y manejo. Rionegro: Fondo Editorial Universidad Católica de Oriente; Cornare;2019.
Cárdenas D, Baptiste MP, Castaño N. Plantas exóticas con alto potencial de invasión en Colombia. Bogotá D.C: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; 2017.
Ram M, Alam A, Sangeeta K. Preliminary phytochemical analysis of different extracts of Ruellia patula, Luffa aegyptiaca and Thunbergia alata. JCPR. 2015 [acceso 13/10/2022];7(10):315-20. Disponible en: https://www.researchgate.net/publication/283417312_Preliminary_phytochemical_analysis_of_different_extracts_of_Ruellia_patula_Luffa_aegyptiaca_and_Thunbergia_alatan
Barrera D, Corredor L. Posconflicto y aprovechamiento de plantas invasoras para el control de cultivos agrícolas en el departamento del Tolima. Rev Invest Uamérica 2019 [acceso 13/10/2022];12(1):75-86. Disponible en: https://revistas.uamerica.edu.co/index.php/rinv/article/view/285
Charles A, Ramani A. Chemosystematics of Genus Thunbergia (A -Mini Review). JCPRME. 2016 [acceso 13/10/2022];5-11. Disponible en: https://www.researchgate.net/publication/305073163_CHEMOSYSTEMATICS_OF_GENUS_THUNBERGIA_A_-MINI_REVIEW
Botero, H. Plantas medicinales: pasado y presente. Medellín: CORANTIOQUIA; 2011.
Amariles S, García C, Parra G. Actividad insecticida de extractos vegetales sobre larvas de Aedes aegypti, Diptera: Culicidae. CES Med. 2013;27(2):193-203.
Gerberg EJ. Manual for Mosquito Rearing and Experimental Techniques. American Mosquito Control Association (AMCA);1970. Bulletin no. 5. 112 p.
Leyva M, Marquetti MC, Tacoronte JE, Scull R, Tiomno O, et al. Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L.) (Diptera: Culicidae). Biomed. 2009 [acceso 13/10/2022];20(1):5-13. Disponible en: https://www.medigraphic.com/pdfs/revbio/bio-2009/bio091b.pdf
Aguirre OA, Duarte I, Álvarez JC, Jiménez J. Actividad larvicida de extractos vegetales de la familia Asteraceae y modelación matemática para su uso en el control de poblaciones de Aedes aegypti. Actual Biol. 2018 [acceso 13/10/2022];40(108):5-16. Disponible en: https://revistas.udea.edu.co/index.php/actbio/article/view/333119
Jawale C. Larvicidal Activity of Some Saponin Containing Plants Against the Dengue Vector Aedes aegypti. TBR. 2014;3(1):1-11.
Sarwar M. The Killer Chemicals for Control of Agriculture Insect Pests: The Botanical Insecticides. International Journal of Chemical and Biomolecular Science. 2015;1(3):123-8.
Kokila NR, Mahesh B, Roopa KP, Daruka Prasad B, Raj K, Manjula SN, et al. Thunbergia mysorensis mediated nano silver oxide for enhanced antibacterial, antioxidant, anticancer potential and in vitro hemolysis evaluation. J Mol Struct. 2022;1255(132455):1-12.
Hssaini L, Razouk R, Bouslihim Y. Rapid Prediction of Fig Phenolic Acids and Flavonoids Using Mid-Infrared Spectroscopy Combined with Partial Least Square Regression. Front Plant Sci. 2022;13(782159):1-16.
Pai S, Kini SM, Narasimhan MK, Pugazhendhi A, Selvaraj R. Structural characterization and adsorptive ability of green synthesized Fe3O4 nanoparticles to remove Acid blue 113 dye. Surf Interfaces. 2021;23(100947):1-9.
Phuong H, Le Duy N, Dao Tin Q, Huynh Tra TT Tran, Viet Nguyen. Extracción y purificación de antocianinas de Peristrophe bivalvis (L.) Merr. hoja (Acanthaceae) utilizando sistemas acuosos de dos fases, Natural Product Research. 2021;37(1):154-8, DOI: https://doi.org/10.1080/14786419.2021.1952203
Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. Fifth edition. Stamford, CT: Cengage Learning; 2015.
Jaramillo G, Palacio M, Holguín C. Memorias & Resúmenes Congreso Colombiano de Entomología, 42° Congreso SOCOLEN. Medellín: Sociedad Colombiana de Entomología – SOCOLEN; 2015.
Jayaraman M, Senthilkumar A, Venkatesalu V. Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol Res. 2015;114(4):1511-8.
Downloads
Published
How to Cite
Issue
Section
License
Licencia Creative Commons
La Revista Cubana de Medicina Tropcial se encuentra bajo una
Este sitio está bajo Licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.