Sensibilidad a la cicloheximida de hongos del aire del Vedado, La Habana, Cuba

Michel Almaguer Chávez, María Fernández-González, Kenia C. Sánchez Espinosa, Mailín Abreu Rodríguez

Texto completo:

PDF

Resumen

Introducción: La cicloheximida inhibe el crecimiento de hongos miceliares no dermatofitos que suelen crecer más rápido in vitro. Sin embargo, pueden existir hongos ambientales con la propiedad de crecer en su presencia.

Objetivo: Determinar la propiedad de crecimiento, en presencia de la cicloheximida de hongos filamentosos, recolectados previamente del aire del Vedado en La Habana, Cuba.

Métodos: Un total de 175 aislados fúngicos recolectados previamente del aire de una zona urbana de La Habana durante el año 2019 se sembraron en medio de cultivo Agar Sabouraud Dextrosa con cicloheximida y sin cicloheximida. Se midieron los diámetros de las colonias a los siete días de incubación a 28°C.

Resultados: El 52,6 % de los aislados recolectados creció de forma abundante (> 3mm); el 18,3 % limitadamente (< 3mm) y el resto (29,1 %) no creció. Más del 70 % de los aislados de Aspergillus, Cladosporium, Curvularia y Penicillium pudieron crecer en presencia de la cicloheximida. El porcentaje de aislados que crecieron en presencia de la clicloheximida en cada mes fue variable.

Conclusiones: Se detectó un elevado porcentaje de hongos ambientales con la propiedad de crecer en presencia de la cicloheximida con una distribución variable durante el año de estudio y con el predominio de aislados de Aspergillus.

Palabras clave

actidiona; aislados fúngicos; atmósfera; medio de cultivo.

Referencias

Leach BE, Ford JH, Whiffen AJ. Actidione, an antibiotic from Streptomyces griseus. J. Am. Chem. Soc. 1947;69(2):474-5. DOI: https://doi.org/10.1021/ja01194a519

Syuhada NH, Merican F, Zaki S, Broady PA, Convey P, Muangmai N. Strong and widespread cycloheximide resistance in Stichococcus-like eukaryotic algal taxa. Sci. Rep. 2022;12(1):1. DOI: https://doi.org/10.1038/s41598-022-05116-y

Pereira RS, Dos Santos HD, Moraes OS, Júnior DP, Hahn RC. Children’s public health: Danger of exposure to pathogenic fungi in recreational places in the middle-west region of Brazil. Journal of infection and public health. 2020;13(1):51-7. DOI: https://doi.org/10.1016/j.jiph.2019.06.018

Sutton DA. Specimen collection, transport, and processing: mycology. Manual of clinical microbiology. 2003;2:1659-67. DOI. https://doi.org/10.1128/9781555817381.ch114

Bhosale NK, Prabha R, Munuswamy R, Pramodhini S, Easow JM. A Comparative Study on the Phenotypic Versus Molecular Identification of Clinical Dermatophytes. J Pure Appl Microbiol. 2022. DOI: https://doi.org/10.22207/JPAM.16.2.40

Mendek S, Lugović-Mihić L, Ferček I, Japundžić I, Šitum M, Abram M. The Prevalence of Onychomycosis in the Zagreb Area–the Role of Sabouraud Agar without Cycloheximide in Diagnosis and Therapy. Acta Clínica Croática. 2018;57(4.):726-34. DOI: https://doi.org/10.20471/acc.2018.57.04.15

Saunte DM, Hare RK, Jørgensen KM, Jørgensen R, Deleuran M, Zachariae CO, et al. Emerging terbinafine resistance in Trichophyton: clinical characteristics, squalene epoxidase gene mutations, and a reliable EUCAST method for detection. Antimicrobial agents and chemotherapy. 2019;63(10):e01126-19. DOI: https://doi.org/10.1128/AAC.01126-19

Dal Pizzol M, Freitas EC, Locatelli C, Guareze F, Reginatto P, Machado G, et al. Antifungal efficacy and safety of cycloheximide as a supplement in optisol-GS. Drug Design, Development and Therapy. 2021:2091-8. DOI: https://doi.org/10.2147/DDDT.S298059

Park JH, Oh J, Song JS, Kim J, Sung GH. Bisifusarium delphinoides, an emerging opportunistic pathogen in a burn patient with diabetes mellitus. Mycobiology. 2019;47(3):340-5. DOI: https://doi.org/10.1080/12298093.2019.1628521

Araya S, Tesfaye B, Fente D. Epidemiology of dermatophyte and non-dermatophyte fungi infection in Ethiopia. Clinical, Cosmetic and Investigational Dermatology. 2020:291-7. DOI: http://doi.org/10.2147/CCID.S246183

Pereira RS, Dos Santos HD, Moraes OS, Júnior DP, Hahn RC. Children’s public health: Danger of exposure to pathogenic fungi in recreational places in the middle-west region of Brazil. Journal of infection and public health. 2020;13(1):51-7. DOI: https://doi.org/10.1016/j.jiph.2019.06.018

Salkin IF. Adaptation to cycloheximide: in vitro studies with filamentous fungi. Can. J. Microbiol. 1975;21(9):1413-9. DOI: https://doi.org/10.1139/m75-211

Dixon DM, Shadomy HJ, Shadomy S. Dematiaceous fungal pathogens isolated from nature. Mycopathologia. 1980;70(3):153-61. DOI: https://doi.org/10.1007/BF00443026

Singh RS, Prashar M. Studies on Rhizopus rot of peach and its control. J. Plant Pathol. 1984;14(2):185-7.

FilipelloMarchisio V, Cassinelli C, Piscozzi A, Tullio V, Mischiati P. A preliminary survey of cycloheximide resistant airborne fungi in Turin, Italy. Mycopathologia. 1993;123(1):1-8. DOI: https://doi.org/10.1007/BF01103482

Almaguer Chávez, M, Rojas -Flores, T i. Aeromicota viable de la atmósfera de La Habana, Cuba. NACC. 2013 [acceso 26/03/2023];20. Disponible en: https://revistas.usc.gal/index.php/nacc/article/view/1404

D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457-61. DOI: https://doi.org/10.1038/nature10388

Peterson E, Kaur P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018;30;9:2928. DOI: https://doi.org/10.3389/fmicb.2018.02928.

Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016;4(2):4-2. DOI: https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

Wingfield BD, Wingfield MJ, Duong TA. Molecular basis of cycloheximide resistance in the Ophiostomatales revealed. Curr. Genet. 2022:1-0. DOI: https://doi.org/10.1007/s00294-022-01235-1

Griffin DH, Sullia SB, Salkin IF. Resistance of selected saprobic and zoopathogenic fungi to cycloheximide. Microbiology. 1978;105(1):127-34. DOI: https://doi.org/10.1099/00221287-105-1-127

Crouzet M, Perrot M, Nogueira M, Bégueret J. Genetic and biochemical analysis of cycloheximide resistance in the fungus Podospora anserina. Biochem. Genet. 1978;16(3):271-86. DOI: https://doi.org/10.1007/BF00484084

Yamada T, Yaguchi T, Salamin K, Guenova E, Feuermann M, Monod M. Mfs1, a pleiotropic transporter in dermatophytes that plays a key role in their intrinsic resistance to chloramphenicol and fluconazole. Journal of Fungi. 2021;7(7):542. DOI: https://doi.org/10.3390/jof7070542

Sullia SB, Maria R. Acquired cycloheximide resistance in Neurospora crassa and Sclerotium rolfsii. Proceedings: Plant Sciences. 1985;95(6):417-27. DOI: https://doi.org/10.1007/BF03053680

Eerdmans MM, Amundson SA, Reinhart TA, Klein KK. Dominance Relationships of Cycloheximide Resistant Mutants of Schizophyllum commune Fr. J. Minn. Acad. Sci. 1990 [acceso 26/03/2023];55(3):21-4. Disponible en https://digitalcommons.morris.umn.edu/jmas/vol55/iss3/7

Madhosingh Micales JA, Stipes RJ. Zearalenone production in Fusarium culmorum after transformation with DNA of F. graminearum. Plant Pathol. 1985;34(3):402-7. DOI: https://doi.org/10.1111/j.1365-3059.1985.tb01379.x

Fennessy D, Grallert A, Krapp A, Cokoja A, Bridge AJ. Extending the Schizosaccharomyces pombe Molecular Genetic Toolbox. PLOS ONE. 2014;9(5):e97683. DOI: https://doi.org/10.1371/journal.pone.0097683

Moniot M, Lavergne RA, Morel T. Hormographiella aspergillata: an emerging basidiomycete in the clinical setting? A case report and literature review. BMC Infect Dis. 2020;20:945. DOI: https://doi.org/10.1186/s12879-020-05679-z.

Traynor JD, Sardharwalla I, North J. Biochemical analysis of the role of cytoplasmic ribosomes of Coprinus cinereus in cycloheximide resistance. Microbiology. 1986;132(3):757-63. DOI: https://doi.org/10.1099/00221287-132-3-757

Weitzman I, Rosenthal SA, Shupack JL. A comparison between Dacllaria gallopava and Scolecobasidium humicola: First report of an infection in a tortoise caused by S. humicola. Sabouraudia. 1985; 23:287-93. DOI: https://doi.org/10.1080/00362178585380411

Levetin E, Horner WE, Scott JA, Barnes C, Baxi S, Chew GL, et al. Taxonomy of allergenic fungi. J. Allergy Clin. Immunol. Pract. 2016;4(3):375-85. DOI: https://doi.org/10.1016/j.jaip.2015.10.012

Kuehn HH, Orr GF. Tolerance of certain fungi to actidione and its use in isolation of Gymnoascaceae. Sabouraudia. 1962;1(4):220-9. DOI: https://doi.org/10.1080/00362176285190421

Yamada Y. RPD3 and UME6 are involved in the activation of PDR5 transcription and pleiotropic drug resistance in ρ 0 cells of Saccharomyces cerevisiae. BMC microbiology. 2021;21:1-9. DOI: https://doi.org/10.1186/s12866-021-02373-1

Orr GF. Keratinophilic fungi isolated from soils by a modified hair bait technique. Sabouraudia: J. Med. Vet. Mycol. 1969;7(2):129-34. DOI: https://doi.org/10.1080/00362177085190231

Labuda R, Bacher M, Rosenau T, Gasparotto E, Gratzl H, Doppler M, et al. Polyphasic Approach Utilized for the Identification of Two New Toxigenic Members of Penicillium Section Exilicaulis, P. krskae and P. silybi spp. nov. Journal of Fungi. 2021;7(7):557. DOI: https://doi.org/10.3390/jof7070557

Rippon JW. Medical mycology. The pathogenic fungi and the pathogenic actinomycetes. WB Saunders company; 1988. DOI: https://doi.org/10.1001/jama.1988.03410120140051

Abdel‐Hafez AI, El‐Sharouny HM. The occurrence of keratinophilic fungi in sewage sludge from Egypt. J. Basic Microbiol. 1990;30(2):73-9. DOI: https://doi.org/10.1002/jobm.3620300203

Ali-Shtayeh MS, Jamous RM, Abu-Ghdeib SI. Ecology of cycloheximide-resistant fungi in field soils receiving raw city wastewater or normal irrigation water. Mycopathologia. 1998;144(1):39-55. DOI: https://doi.org/10.1023/A:1006952926293

Calvo MA, Dronda MA, Castello R. Fungal spores in house dust. Ann Allergy. 1982;49:213-9.

Huseinovic A, van Dijk M, Vermeulen NP, van Leeuwen F, Kooter JM, Vos JC. Drug toxicity profiling of a Saccharomyces cerevisiae de ubiquitinase deletion panel shows that acetaminophen mimics tyrosine. Toxicology in Vitro. 2018;47:259-68. DOI: https://doi.org/10.1016/j.tiv.2017.12.007

Samant RS, Frydman J. Methods for measuring misfolded protein clearance in the budding yeast Saccharomyces cerevisiae. En: Methods in Enzymology. 2019;619:27-45. Academic Press. DOI: https://doi.org/10.1016/bs.mie.2018.12.039

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2024 Michel Almaguer Chávez, María Fernández-González, Kenia C. Sánchez Espinosa, Mailín Abreu Rodríguez

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.