Evaluación de endoperóxidos frente a Leishmania spp.: Avances y perspectivas
Texto completo:
PDFResumen
Introducción: Los endoperóxidos son moléculas que presentan un enlace O-O entre dos átomos de carbono de un anillo cíclico. Aunque se conocen varios ejemplos de estas moléculas, solo se identificaron revisiones de actividad antileishmanial para la artemisina y sus derivados, donde no se consideran los aportes experimentales recientes.
Objetivo: Identificar evidencias recientes de acción antileishmanial de endoperóxidos de diferentes fuentes.
Métodos: Se realizó una revisión de artículos publicados en 10 años (2013-2022), en español e inglés, principalmente en la base de datos PubMed/Medline y utilizando Google Scholar.
Resultados: Tras revisar 44 artículos originales se identificaron 31 endoperóxidos activos sobre Leishmania; de los cuales 11 fueron 1,2,4-trioxanos, 12, 1,2-dioxanos, seis derivados de 2-adamanto, además de dos tetraoxanos. Además de la artemisina y sus derivados, se destacan como compuestos promisorios el ascaridol, por su capacidad de controlar el desarrollo de lesiones cutáneas murinas, y dos tetraoxanos que disminuyeron significativamente la carga parasitaria en hígado y bazo de ratones infectados.
Conclusiones: Las potencialidades farmacológicas de los endoperóxidos frente a Leishmania spp. se ha demostrado en estudios de diferentes grupos de investigación. Los trabajos publicados se han desarrollado fundamentalmente in vitro y en especies de Asia, África y el sur de Europa. Se proponen posibles dianas moleculares mitocondriales, sin descartar la contribución de las membranas, citoplasma y kinetoplasto del parásito al mecanismo de acción. La información reunida puede facilitar el reposicionamiento de las artemisinas y/o la selección de otros endoperóxidos como punto de partida para el desarrollo de una nueva opción terapéutica.
Palabras clave
Referencias
Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, et al. A Review of leishmaniasis: Current knowledge and future directions. Curr Trop Med Rep. 2021;8(2):121-32 DOI: https://doi.org/10.1007/s40475-021-00232-7
Organización Mundial de la Salud. Leishmaniasis, nota descriptiva, 2022 [acceso 03/12/2022] Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/leishmaniasis
Moafi M, Rezvan H, Sherkat R, Taleban R. Leishmania vaccines entered in clinical trials: A review of literature. Int J Prev Med. 2019;10:95. DOI: https://doi.org/10.4103/ijpvm.IJPVM_116_18
Olías-Molero AI, de la Fuente C, Cuquerella M, Torrado JJ, Alunda JM. Antileishmanial drug discovery and development: Time to reset the model? Microorganisms. 2021;9(12):2500. DOI: https://doi.org/10.3390/microorganisms9122500
Rudrapal M, Chetia D. Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold. Drug Des Devel Ther. 2016;10,3575-90. DOI: https://doi.org/10.2147/DDDT.S118116
Loo CS, Lam NS, Yu D, Su XZ, Lu F. Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res. 2017;117:192-217. DOI: https://doi.org/10.1016/j.phrs.2016.11.012
Fudickar W; Linker T. Release of singlet oxygen from aromatic endoperoxides by chemical triggers. Angew Chem Int Ed Engl. 2018,57(39):12971-5. DOI: https://doi.org/10.1002/anie.201806881
Plastaras JP, Guengerich FP, Nebert DW, Marnett LJ. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde. J Biol Chem. 2000;275(16):11784-90. DOI: http://doi.org/10.1074/jbc.275.16.11784
Zeilhofer HU. Prostanoids in nociception and pain. Biochem Pharmacol. 2007;73(2):165-74. DOI: http://doi.org/10.1016/j.bcp.2006.07.037
Dembitsky VM. Bioactive peroxides as potential therapeutic agents. Eur J Med Chem. 2008;43(2):223-51. DOI: http://doi.org/10.1016/j.ejmech.2007.04.019
Dembitsky VM, Ermolenko E, Savidov N, Gloriozova TA, Poroikov VV. Antiprotozoal and antitumor activity of natural polycyclic endoperoxides: Origin, structures and biological activity. Molecules. 2021;26(3):686. DOI: http://doi.org/10.3390/molecules26030686
Clennan EL. Aromatic endoperoxides. Photochem Photobiol. 2022. DOI: http://doi.org/10.1111/php.13674
Uddin A, Chawla M, Irfan I, Mahajan S, Singh S, Abid M. Medicinal chemistry updates on quinoline-and endoperoxide-based hybrids with potent antimalarial activity. RSC Med Chem. 2021;12(1):24-42. DOI: http://doi.org/10.1039/d0md00244e
Tran T, Qiao Y, You H, Cheong DH. Chronic inflammation in asthma: Antimalarial drug artesunate as a therapeutic agent. En: Chatterjee S, Jungraithmayr W, Bagchi D (Eds.): Immunity and Inflammation in Health and Disease. 1st edition. London, New York, Cambridge, Oxford: Academic Press; 2018:309-18.
Manske M, Miotto O, Campino S, Auburn S, Zongo I, Ouedraogo J, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012; 487(7407):375-9. DOI: https://doi.org/10.1038/nature11174
Laranjeira-Silva MF, Hamza I, Pérez JM. Iron and heme metabolism at the Leishmania host interface. Trends Parasitol. 2020;36(3):279-89. DOI: https://doi.org/10.1016/j.pt.2019.12.010
Aucamp J, Zuma NH, N'Da D. In vitro efficacy of synthesized artemisinin derivatives against Leishmania promastigotes. Bioorg Med Chem Lett. 2020;30(22):127581. DOI: https://doi.org/10.1016/j.bmcl.2020.127581
Medrán NS, Sayé M, Pereira CA, Tekwani BL, La-Venia A, Labadie GR. Expanding the scope of synthetic 1,2,4-trioxanes towards Trypanosoma cruzi and Leishmania donovani. Bioorg Med Chem Lett. 2020;30(20):127491. DOI: https://doi.org/10.1016/j.bmcl.2020.127491
Sen R, Saha P, Sarkar P, Ganguly S, Chatterjee M. Iron enhances generation of free radicals by artemisinin causing a caspase-independent, apoptotic death in Leishmania donovani promastigotes. Free Rad Res. 2010;44(11):1289-95. DOI: https://doi.org/10.3109/10715762.2010.498475
Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P, et al. Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol. 2007;56(9):1213-8. DOI: https://doi.org/0.1099/jmm.0.47364-0
De Sarkar S, Sarkar D, Sarkar A, Dighal A, Chakrabarti S, Staniek K, et al. The leishmanicidal activity of artemisinin is mediated by cleavage of the endoperoxide bridge and mitochondrial dysfunction. Parasitol. 2019;146(4):511-20. DOI: https://doi.org/0.1017/S003118201800183X
Neamah SD, Ali HZ, Al-Halbosiy M. Detection of artemisinin effect on macrophage inducible nitric oxide gene expression in macrophage infected with Leishmania donovani. Ann Parasitol. 2022;68(2):331-8. DOI: https://doi.org/10.17420/ap6802.439
Grazzia N, Boaventura S, Garcia V, Gadelha F, Miguel D. Dihydroartemisinin, an active metabolite of artemisinin, interferes with Leishmania braziliensis mitochondrial bioenergetics and survival. Parasitol Res. 2021;120(2):705-13. DOI: https://doi.org/10.1007/s00436-020-07019-1
Geroldinger G, Tonner M, Hettegger H, Bacher M, Monzote L, Walter M, et al. Mechanism of ascaridole activation in Leishmania. Biochem Pharmacol. 2017;132:48-62. DOI: http://doi.org/10.1016/j.bcp.2017.02.023
Geroldinger G, Tonner M, Quirgst J, Walter M, De Sarkar S, Machín L, et al. Activation of artemisinin and heme degradation in Leishmania tarentolae promastigotes. Biochem Pharmacol. 2020;173:113737. DOI: https://doi.org/10.1016/j.bcp.2019.113737
Dighal A, De Sarkar S, Gille L, Chatterjee M. Can the iron content of culture media impact on the leishmanicidal effect of artemisinin? Free Radic Res. 2021;55(3):282-95. DOI: https://doi.org/0.1080/10715762.2021.1939325
Sen R, Ganguly S, Saha P, Chatterjee M. Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents. 2010;36(1):43-9. DOI: https://doi.org/10.1016/j.ijantimicag.2010.03.008
Mutiso JM, Macharia JC, Barasa M, Taracha E, Bourdichon AJ, Gicheru MM. In vitro and in vivo antileishmanial efficacy of a combination therapy of diminazene and artesunate against Leishmania donovani in BALB/c mice. Rev Inst Med Trop Sao Paulo. 2011;53(3):129-32. DOI: https://doi.org/10.1590/s0036-46652011000300003
Al-Halbosiy M, Ali H, Hassan GM, Ghaffarifar F. Artemisinin efficacy against old world Leishmania donovani: in vitro and ex vivo study. Ann Parasitol. 2020;66(3):295-302 DOI: https://doi.org/10.17420/ap6603.267
Dehkordi N, Ghaffarifar F, Hassan Z, Heydari F. In vitro and in vivo studies of antileishmanial effect of artemether on Leishmania infantum. Jundish J Microbiol. 2013;6(5):e6379. DOI: https://doi.org/10.5812/jjm.6379
Cortes S, Albuquerque A, Cabral LI, Lopes L, Campino L, Cristiano ML. In vitro susceptibility of Leishmania infantum to artemisinin derivatives and selected trioxolanes. Antimicrob Agents Chemother. 2015;59(8):5032-5. DOI: https://doi.org/10.1128/AAC.00298-15
Molaie S, Ghaffarifar F, Hasan ZM, Dalimi A. Enhancement effect of shark cartilage extract on treatment of Leishmania infantum with artemisinin and glucantime and evaluation of killing factors and apoptosis in vitro condition. Iran J Pharm Res. 2019;18(2):887-902 DOI: https://doi.org/10.22037/ijpr.2019.1100656
Ebrahimisadr P, Ghaffarifar F, Mohammad Z. In-vitro evaluation of antileishmanial activity and toxicity of artemether with focus on its apoptotic effect. Iran J Pharm Res. 2013 [acceso 03/12/2022];12(4):903-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24523770/
Ghaffarifar F, Heydari F, Dalimi A, Hassan Z, Delavari M, Mikaeiloo H. Evaluation of apoptotic and antileishmanial activities of artemisinin on promastigotes and BALB/C mice infected with Leishmania major. Iran J Parasitol. 2015 [acceso 03/12/2022];10(2):258-67. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26246824/
Machín L, Nápoles R, Gille L, Monzote L. Leishmania amazonensis response to artemisinin and derivatives. Parasitol Int. 2021;80:102218. DOI: http://doi.org/10.1016/j.parint.2020.102218
Medkour H, Bitam I, Laidoudi Y, Lafri I, Lounas A, Hamidat HK, et al. Potential of artesunate in the treatment of visceral leishmaniasis in dogs naturally infected by Leishmania infantum: Efficacy evidence from a randomized field trial. PLoS Negl Trop Dis. 2020;14(12):e0008947. DOI: https://doi.org/10.1371/journal. pntd.0008947
Ebrahimisadr P, Ghaffarifar F, Hassan ZM, Sirousazar M, Mohammadnejad F. Effect of polyvinyl alcohol (PVA) containing artemether in treatment of cutaneous leishmaniasis caused by Leishmania major in BALB/c mice. Jundishapur J Microbiol. 2014;7(5):e9696. DOI: https://doi.org/10.5812/jjm.9696
Gugliandolo E, Palma E, Peritore A, Siracusa R, D`Amico R, Fusco R, et al. Effect of artesunate on Leishmania amazonensis induced neuroinflammation and nociceptive behavior in male BALB/c mice. Animals. 2020;10(4):557. DOI: https://doi.org/10.3390/ani10040557
Machín L, Alcantar J, Lars G, Monzote L. Efficacy of artemisinin in mouse models of experimental cutaneous leishmaniasis caused by Leishmania amazonensis. Rev Cub Med Trop. 2022 [acceso 03/12/2022];74(3). Disponible en: https://revmedtropical.sld.cu/index.php/medtropical
Hopke K, Meyers A, Auckland L, Hamer S, Florin D, Diesel A, et al. Leishmania mexicana in a central Texas cat: clinical presentation, molecular identification, sandfly vector collection and novel management. JFMS Open Rep. 2021; 7(1):2055116921999595. DOI: http://doi.org/10.1177/2055116921999595
Verma A, Ghosh S, Salotra P, Singh R. Artemisinin-resistant Leishmania parasite modulates host cell defense mechanism and exhibits altered expression of unfolded protein response genes. Parasitol Res. 2019;118(9):2705-2713. DOI: https://doi.org/10.1007/s00436-019-06404-9
Ghosh S, Verma A, Kumar V, Pradhan D, Selvapandiyan A, Salotra, et al. Genomic and transcriptomic analysis for identification of genes and interlinked pathways mediating artemisinin resistance in Leishmania donovani. Genes. 2020;11(11):1362. DOI: https://doi.org/10.3390/genes11111362
Intakhan N, Siriyasatien P, Chanmol W. Anti-Leishmania activity of artesunate and combination effects with amphotericin B against Leishmania (Mundinia) martiniquensis in vitro. Acta Trop. 2022;226:106260. DOI: https://doi.org/10.1016/j.actatropica.2021.106260
Want MY, Islamuddin M, Chouhan G, Dasgupta AK, Chattopadhyay AP, Afrin F. A new approach for the delivery of artemisinin: formulation, characterization, and ex-vivo antileishmanial studies. J Colloid Interface Sci. 2014;432:258-69. DOI: https://doi.org/10.1016/j.jcis.2014.06.035
Want MY, Islamuddin M, Chouhan G, Ozbak HA, Hemeg HA, Dasgupta AK, et al. Therapeutic efficacy of artemisinin-loaded nanoparticles in experimental visceral leishmaniasis. Colloids Surf B Biointerfaces. 2015;130:215-21. DOI: https://doi.org/10.1016/j.colsurfb.2015.04.013
Want MY, Islammudin M, Chouhan G, Ozbak HA, Hemeg HA, Chattopadhyay AP, et al. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis. Int J Nanomedicine. 2017;12:2189-2204. DOI: http://doi.org/10.2147/IJN.S106548
Ghaffarifar F, Molaie S, Abazari R, Hasan ZM, Foroutan M. Fe3O4@Bio-MOF nanoparticles combined with artemisinin, Glucantime® or shark cartilage extract on Iranian strain of Leishmania major (MRHO/IR/75/ER): An in vitro and in vivo study. Iran J Parasitol. 2020;15(4):537-48. DOI: https://doi.org/10.18502/ijpa.v15i4.4859
Tsamesidis I, Lymperaki E, Egwu CO, Pouroutzidou GK, Kazeli K, Reybier, K, et al. Effect of silica-based nanoparticles against Plasmodium falciparum and Leishmania infantum parasites. J Xenobiot. 2021;11(4):155-62. DOI: https://doi.org/10.3390/jox11040011
Khazaei M, Rahnama V, Motazedian M, Samani SM, Hatam G. In vitro effect of artemether-loaded nanostructured lipid carrier (NLC) on Leishmania infantum. J Parasit Dis. 2021;45(4):964-71 DOI: https://doi.org/10.1007/s12639-021-01373-2
Rahnama V, Motazedian MH, Mohammadi-Samani S, Asgari Q, Ghasemiyeh P, Khazaei M. Artemether-loaded nanostructured lipid carriers: preparation, characterization, and evaluation of in vitro effect on Leishmania major. Res Pharm Sci. 2021;16(6):623-33. DOI: https://doi.org/10.4103/1735-5362.327508
Pollack Y, Segal R, Golenser J. The effect of ascaridole on the in vitro development of Plasmodium falciparum. Parasitol Res. 1990;76(7):570-2. DOI: https://doi.org/10.1007/BF00932563
Kiuchi F, Itano Y, Uchiyama N, Honda G, Tsubouchi A, Nakajima-Shimada J, et al. Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. J Nat Prod. 2002;65(4):509-12. DOI: https://doi.org/10.1021/np010445g
Monzote L, Almannoni S, Montalvo AM, Scull R, Miranda M, Abreu J. Activity of essential oil from Chenopodium ambrosioides grown in Cuba against Leishmania amazonensis. Chemotherapy. 2006;52(3):130-6. DOI: https://doi.org/10.1159/000092858
Zhabinskii VN, Drasar P, Khripach VA. Structure and biological activity of ergostane-type steroids from Fungi. Molecules. 2022;27(7):2103. DOI: https://doi.org/10.3390/molecules27072103
Leliebre V, Monzote L, Pferschy-Wenzig EM, Kunert O, Lima CN, Bauer R. In Vitro antileishmanial activity of sterols from Trametes versicolor (Bres. Rivarden). Molecules. 2016;21(8):1045. DOI: https://doi.org/1.03390/molecules21081045
Wonkam AK, Ngansop CA, Tchuenmogne MA, Tchegnitegni BT, Bitchagno GT, Awantu AF, et al. Chemical constituents from Baphia leptobotrys Harms (Fabaceae) and their chemophenetic significance. Biochem Syst Ecol. 2021;96:104260. DOI: https://doi.org/10.1016/j.bse.2021.104260
Sarkar D, De Sarkar S, Gille L, Chatterjee M. Ascaridole exerts the leishmanicidal activity by inhibiting parasite glycolysis. Phytomed. 2022;103:154221. DOI: https://doi.org/10.1016/j.phymed.2022.154221
Monzote L, García M, Pastor J, Gille L, Scull R, Maes L, et al. Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms. Exp Parasitol. 2013;136:20-6. DOI: https://doi.org/10.1016/j.exppara.2013.10.007
Monzote L, Pastor J, Scull R, Gille L. Antileishmanial activity of essential oil from Chenopodium ambrosioides and its main components against experimental cutaneous leishmaniasis in BALB/c mice. Phytomed. 2014;21:1048-52. DOI: https://dx.doi.org/10.1016/j.phymed.2014.03.002
Machín L, Alcantar J, Lars G, Monzote L. Oral and intralesional efficacy of ascaridole in BALB/c and C57BL/6 mice infected with Leishmania amazonensis. Rev Cub Farm. 2022 [acceso 03/12/2022];55(4):e793. Disponible en: https://revfarmacia.sld.cu/index.php/far/article/view/793
Monzote L, Geroldinger G, Tonner M, Scull R, De SS, Bergmann S, et al. Interaction of ascaridole, carvacrol, and caryophyllene oxide from essential oil of Chenopodium ambrosioides L. with mitochondria in Leishmania and other eukaryotes. Phytother Res. 2018;32(9):17291740. DOI: https://doi.org/10.1002/ptr.6097
Alexandre TR, Lima ML, Galuppo MK, Mesquita JT, do Nascimento MA, dos Santos AL, et al. Ergosterol isolated from the basidiomycete Pleurotus salmoneostramineus affects Trypanosoma cruzi plasma membrane and mitochondria. J Venom Anim Toxins Incl Trop Dis. 2017;23:30. DOI: http://doi.org/10.1186/s40409-017-0120-0
Meza L, Ramos A, López A, Limón A, Kaluzhskiy LA, Shkel TV, et al. Insights into ergosterol peroxide’s trypanocidal activity. Biomolecules. 2019;9(9):484. DOI: https://doi.org/10.3390/biom9090484
Torres I, López JL, Muñoz M, Rodríguez I, Álvarez M. Marine terpenic endoperoxides. Mar Drugs. 2021;19(12):661. DOI: https://doi.org/10.3390/md19120661
Vil VA, Gloriozova TA, Dembitsky VM. Peroxy steroids derived from plant and fungi and their biological activities. Appl Microbiol Biotechnol. 2018;102(18):7657-67. DOI: https://doi.org/10.1007/s00253-018-9211-2
Ma L, Wang H, Wang J, Liu L, Zhang S, Bu M. Novel steroidal 5α,8α-endoperoxide derivatives with semicarbazone/thiosemicarbazone side-chain as apoptotic inducers through an intrinsic apoptosis pathway: design, synthesis and biological studies. Molecules. 2020; 25(5):1209. DOI: http://doi.org/10.3390/molecules25051209
Lenzi J, Costa TM, Alberton MD, Greinert JA, Tavares LB. Medicinal fungi: a source of antiparasitic secondary metabolites. App Microbiol Biotechnol. 2018;102(14):5791-810. DOI: https://doi.org/10.1007/s00253-018-9048-8
Fudickar W, Linker T. Reversible photooxygenation of alkynylanthracenes: Chemical generation of singlet oxygen under very mild conditions. Chem Eur J. 2011;17(49):13661-4. DOI: https://doi.org/10.1002/chem.201102230
Klaper M, Wessig P, Linker T. Base catalysed decomposition of anthracene endoperoxide. Chem Commun. 2016;52:1210-3. DOI: https://doi.org/10.1039/C5CC08606J
Geroldinger G, Tonner M, Fudickar W, De Sarkar S, Dighal A, Monzote L, et al. Activation of anthracene endoperoxides in Leishmania and impairment of mitochondrial functions. Molecules. 2018;23(7):1680. DOI: https://doi.org/10.3390/molecules23071680
Machín L, Piontek M, Todhe S, Staniek K, Monzote L, Fudickar W, et al. Antileishmanial anthracene endoperoxides: Efficacy in vitro, mechanisms and structure-activity relationships. Molecules. 2022;27(20):6846. DOI: https://doi.org/10.3390/molecules27206846
Ortalli M, Varani S, C. Rosso A. Quintavalla M. Lombardo C. Trombini, Evaluation of synthetic substituted 1,2-dioxanes as novel agents against human leishmaniasis. Eur J Med Chem. 2019;170:126-140. DOI: https://doi.org/10.1016/j.ejmech.2019.02.070
Ortalli M, Varani S, Cimato G, Veronesi R, Quintavalla A, Lombardo M, et al. Evaluation of the pharmacophoric role of the O−O bond in synthetic antileishmanial compounds: comparison between 1,2 dioxanes and tetrahydropyrans. J Med Chem. 2020.63(21):13140-58. DOI: https://dx.doi.org/10.1021/acs.jmedchem.0c01589
Mendes A, Armada A, Cabral LI, Amado PS, Campino L, Cristiano ML, et al. 1,2,4-trioxolane and 1,2,4,5-tetraoxane endoperoxides against Old-World Leishmania parasites: In vitro activity and mode of action. Pharmaceuticals. 2022;15(4):446. DOI: https://doi.org/10.3390/ph15040446
Cabral LI, Pomel S, Cojean S, Amado PS, Loiseau PM, Cristiano ML. Synthesis and antileishmanial activity of 1,2,4,5-tetraoxanes against Leishmania donovani. Molecules. 2020;25(3):465. DOI: http://doi.org/10.3390/molecules25030465
Antolínez IV, Barbosa LC, Borgati TF, Baldaia A, Ferreira SR, Almeida RM, et al. Tetraoxanes as new agents against Leishmania amazonensis. Chem Biodiver. 2020;17(6):e2000142. DOI: https://doi.org/10.1002/cbdv.202000142
Kwofie KD, Sato K, Sanjoba C, Hino A, Shimogawara R, Amoa-Bosompem M, et al. Oral activity of the antimalarial endoperoxide 6-(1,2,6,7-tetraoxaspiro[7.11] nonadec-4-yl)hexan-1-ol (N-251) against Leishmania donovani complex. PLoS Negl Trop Dis. 2019;13(3):e0007235. DOI: https://doi.org/10.1371/journal. pntd.0007235
Avery MA, Muraleedharan KM, Desai PV, Bandyopadhyaya AK, Furtado MM, Tekwan BL. Structure-activity relationships of the antimalarial agent artemisinin. 8. Design, synthesis, and CoMFA studies toward the development of artemisinin-based drugs against leishmaniasis and malaria, J Med Chem. 2003;46:4244-58. DOI: https://doi.org/10.1021/jm030181q
Mukanganyama S, Naik YS, Widersten M, Mannervik B, Hasler JA. Proposed reductive metabolism of artemisinin by glutathione transferases in vitro. Free Radic Res. 2001;35(4):427-34. DOI: https://doi.org/10.1080/10715760100300941
Creek DJ, Ryan E, Charman WN, Chiu FC, Prankerd RJ, Vennerstrom JL, et al. Stability of peroxide antimalarials in the presence of human hemoglobin. Antimicrob Agents Chemother. 2009;53(8):3496-500. DOI: https://doi.org/0.1128/AAC.00363-09
Silveira N, Saar J, Santos AD, Barison A, Sandjo LP, Kaiser M, et al. A new alkamide with an endoperoxide structure from Acmella ciliata (Asteraceae) and its in vitro antiplasmodial activity. Molecules. 2016;21(6):765. DOI: http://doi.org/10.3390/molecules21060765
Capela R, Magalhães J, Miranda D, Machado M, Sanches M, Albuquerque IS, et al. Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability. Eur J Med Chem. 2018;149:69-78. DOI: http://doi.org/10.1016/j.ejmech.2018.02.048
Dushime R, Zhu Y, Wu H, Saez D, Shukla K, Biavatti M, et al. Discovery of spilanthol endoperoxide as a redox natural compound active against mammalian Prx3 and Chlamydia trachomatis infection. Antioxidants. 2020;9(12):1220. DOI: http://doi.org/10.3390/antiox9121220
Atolani O, Sulaiman FA, Hamid AA, Alayo A, Akina AC, Oloriegbe S, et al. In pursuit of new anti-malarial candidates: novel synthesized and characterized pyrano-benzodioxepin analogues attenuated Plasmodium berghei replication in malaria-infected mice. Heliyon. 2021;7(12):e08517. DOI: https://doi.org/10.1016/j.heliyon.2021.e08517
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2024 Laura Machín Galarza, Lars Gille, Lianet Monzote Fidalgo
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.