Marcadores de laboratorio asociados a la persistencia de la detección del SARS-COV-2
Texto completo:
PDFResumen
Introducción: La elevada persistencia en el tracto nasofaríngeo del SARS-CoV-2 en algunos pacientes fue uno de los principales problemas producidos por el virus.
Objetivos: Determinar la relación entre marcadores de laboratorio de pacientes con COVID-19 y la persistencia de la detección del SARS-CoV-2 en la nasofaringe.
Métodos: Estudio observacional retrospectivo de pacientes con PCR positiva para SARS-CoV-2. El grupo control incluyó pacientes con una PCR positiva seguida de dos negativas, mientras que el grupo de casos incluyó pacientes con al menos tres PCR positivas consecutivas. El tiempo entre muestras consecutivas fue de cinco a 20 días y se incluyeron solamente pacientes con serología negativa frente al SARS-CoV-2. Se recogieron datos demográficos, comorbilidades, sintomatología, radiología, hospitalización, analíticos y de gasometrías.
Resultados: El grupo control mostró valores CT superiores al grupo de casos, independientemente de la sintomatología, el patrón radiológico o el equipo de PCR utilizado. Los pacientes con detección persistente presentaron porcentajes superiores de monocitos e inferiores de linfocitos, así como niveles de amilasa, proteína C reactiva y dímero D superiores. Los valores de la fracción de desoxihemoglobina en la gasometría venosa fueron superiores en el grupo de casos, mientras que los de oxihemoglobina, saturación de oxígeno y presión parcial de oxígeno fueron menores.
Conclusiones: Algunos marcadores de laboratorio podrían relacionarse con la detección prolongada de SARS-CoV-2 en la nasofaringe, lo que permite la optimización de recursos en el laboratorio y la correcta planificación de las medidas sociosanitarias.
Palabras clave
Referencias
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536-44. DOI: https://doi.org/10.1038/s41564-020-0695-z
Legido-Quigley H, Mateos-García JT, Campos VR, Gea-Sánchez M, Muntaner C, McKee M. The resilience of the Spanish health system against the COVID-19 pandemic. Lancet Public Health. 2020 [acceso 05/08/2020];5:e251-2. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104264/
Langford BJ, So M, Raybardhan S, Leung V, Soucy JPR, Westwood D, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27:520-31. DOI: https://doi.org/10.1016/j.cmi.2020.12.018
Qian GQ, Chen XQ, Lv DF, Ma AHY, Wang LP, Yang NB, et al. Duration of SARS-CoV-2 viral shedding during COVID-19 infection. Infectious Diseases. 2020;52:511-2. DOI: https://doi.org/10.1080/23744235.2020.1748705
Fu Y, Li Y, Guo E, He L, Liu J, Yang B, et al. Dynamics and Correlation Among Viral Positivity, Seroconversion, and Disease Severity in COVID-19: A Retrospective Study. Ann Intern Med. 2021;174:453-61. DOI: https://doi.org/10.7326/M20-3337
Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 - A systematic review. Life Sci. 2020;254:117788. DOI: https://doi.org/10.1016/j.lfs.2020.117788
Malik YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol. 2020;42:3-11. PMID: 32342926
Julián-Jiménez A, Candel-González FJ, González Del Castillo J. Usefulness of inflammation and infection biomarkers in the Emergency Department. Enferm Infecc Microbiol Clin. 2014;32:177-90. DOI: https://doi.org/10.1016/j.eimc.2013.01.005
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19:141-54. https://doi.org/10.1038/s41579-020-00459-7
Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J Gen Intern Med. 2020;35:1545-9. DOI: https://doi.org/0.1007/s11606-020-05762-w
Tutorial para evaluación e informe de la radiografía. SERAM. 35º Congreso Nacional SERAM. Edición Virtual, 19 al 26 mayo, 2021 [acceso 28/06/2021]. Disponible en: https://seram.es/index.php/informacion/noticias/1424-tutorial-para-evaluacion-e-informe-de-la-radiografia-de-torax-en-la-infeccion-covid-19?iccaldate=2020-04-1
Chang D, Zhao P, Zhang D, Dong JH, Xu Z, Yang G, et al. Persistent Viral Presence Determines the Clinical Course of the Disease in COVID-19. J Allergy Clin Immunol Pract. 2020 [acceso 30/08/2021];8:2585-91.e1. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305869/
Li TZ, Cao ZH, Chen Y, Cai MT, Zhang LY, Xu H, et al. Duration of SARS-CoV-2 RNA shedding and factors associated with prolonged viral shedding in patients with COVID-19. J Med Virol. 2021;93:506-12. DOI: https://doi.org/10.1002/jmv.26280
Joukar F, Yaghubi Kalurazi T, Khoshsorour M, Taramian S, Mahfoozi L, Balou HA, et al. Persistence of SARS-CoV-2 RNA in the nasopharyngeal, blood, urine, and stool samples of patients with COVID-19: a hospital-based longitudinal study. Virol J. 2021 [acceso 30/08/2021];18:134. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248752/
Johansson MA, Quandelacy TM, Kada S, Prasad PV, Steele M, Brooks JT, et al. SARS-CoV-2 Transmission from People without COVID-19 Symptoms. JAMA Netw Open. 2021;4:e2035057. DOI: https://doi.org/10.1001/jamanetworkopen.2020.35057
Buchta C, Görzer I, Chiba P, Camp JV, Holzmann H, Puchhammer-Stöckl E, et al. Variability of cycle threshold values in an external quality assessment scheme for detection of the SARS-CoV-2 virus genome by RT-PCR. Clin Chem Lab Med. 2021;59:987-94. https://doi.org/10.1515/cclm-2020-1602
van Kasteren PB, van der Veer B, van den Brink S, Wijsman L, de Jonge J, van den Brandt A, et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol. 2020;128:104412. DOI: https://doi.org/10.1016/j.jcv.2020.104412
García F, Melón S, Navarro D, Paño JR, Galán JC. Organización del diagnóstico de SARS-CoV-2 y estrategias de optimización. Documentos Diagnóstico Microbiológico SEIMC (Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica).
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-62. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3
Velázquez S, Madurga R, Castellano JM, Rodríguez-Pascual J, de Aguiar Diaz Obregón SR, Jimeno S, et al. Hemogram-derived ratios as prognostic markers of ICU admission in COVID-19. BMC Emerg Med. 2021;21:89. DOI: https://doi.org/10.1186/s12873-021-00480-w
Khalid A, Ali Jaffar M, Khan T, Abbas Lail R, Ali S, Aktas G, et al. Hematological and biochemical parameters as diagnostic and prognostic markers in SARS-COV-2 infected patients of Pakistan: a retrospective comparative analysis. Hematology. 2021;26:529-42. DOI: https://doi.org/10.1080/16078454.2021.1950898
Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol. 2002;169:4288-97. DOI: https://doi.org/10.4049/jimmunol.169.8.4288
Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020;257:118102. DOI: https://doi.org/10.1016/j.lfs.2020.118102
Eissa M, Shaarawy S, Abdellateif MS. The Role of Different Inflammatory Indices in the Diagnosis of COVID-19. Int J Gen Med. 2021;14:7843-53. DOI: https://doi.org/10.2147/IJGM.S337488
Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol. 2020;18:2128-30. https://doi.org/10.1016/j.cgh.2020.04.040
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71:762-8. DOI: https://doi.org/10.1093/cid/ciaa248
Alamdari DH, Moghaddam AB, Amini S, Keramati MR, Zarmehri AM, Alamdari AH, et al. Application of methylene blue -vitamin C -N-acetyl cysteine for treatment of critically ill COVID-19 patients, report of a phase-I clinical trial. Eur J Pharmacol. 2020;885:173494. DOI: https://doi.org/10.1016/j.ejphar.2020.173494
Soltan AA, Kouchaki S, Zhu T, Kiyasseh D, Taylor T, Hussain ZB, et al. Artificial intelligence driven assessment of routinely collected healthcare data is an effective screening test for COVID-19 in patients presenting to hospital. 2020 [acceso 24/11/2021]. 2020;20:148361. Disponible en: https://www.medrxiv.org/content/10.1101/2020.07.07.20148361v1
Paccaud P, Castanares-Zapatero D, Gerard L, Montiel V, Wittebole X, Collienne C, et al. Arterial Carboxyhemoglobin Levels in COVID-19 Critically Ill Patients. Review. 2020 [acceso 24/11/2021]. Disponible en: https://www.researchsquare.com/article/rs-68522/v1
Liu X, Spolarics Z. Methemoglobin is a potent activator of endothelial cells by stimulating IL-6 and IL-8 production and E-selectin membrane expression. Am J Physiol Cell Physiol. 2003;285:C1036-46. DOI: https://doi.org/10.1152/ajpcell.00164.2003
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 Cytokine Storm; what we Know So Far. Front Immunol. 2020;11:1446. DOI: https://doi.org/10.3389/fimmu.2020.01446
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2024 José María López-Pintor, Óscar Herraez Carrera, Javier Sánchez López, Jorge Gaitán Pitera, María Huertas Vaquero, Ángel Arias Arias, María Ángeles Asencio Egea
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.