Infecciones parasitarias, revisión del tratamiento y la farmacogénetica
Texto completo:
PDFResumen
Introducción: Reportes previos a nivel nacional e internacional evidencian alta incidencia de eventos adversos, alteraciones en la biodisponibilidad en sangre y bajo control durante el tratamiento antiparasitario de diversas enfermedades.
Objetivo: Describir aspectos generales relacionados con las infecciones parasitarias, su tratamiento e identificar los polimorfismos genéticos que influyen en la variabilidad interindividual de la respuesta a algunos antiparasitarios.
Métodos: Se realizó una revisión sistemática cualitativa utilizando como criterios de búsqueda: fisiopatología parasitaria, fármacos antiparasitarios, farmacogenética, farmacogenómica, polimorfismos genéticos, absorción, distribución, metabolismo y excreción y técnicas genéticas, encontrando 1032 bibliografías que fueron filtradas hasta 85 por su utilidad y calidad en los últimos 30 años.
Resultados: Se obtuvo información actualizada acerca de las enfermedades parasitarias, su tratamiento y los conceptos relacionados con las disciplinas de Farmacogenética y Farmacogenómica. Los datos muestran las principales características de los polimorfismos genéticos, y ejemplos de las principales variantes polimórficas relacionadas con el uso de estos medicamentos. Diferencias genéticas en los individuos determinan variaciones en las proteínas involucradas con: el transporte o el metabolismo de 16 fármacos lo cual puede modificar la efectividad, seguridad y respuesta antiparasitaria e inmunológica.
Conclusiones: La farmacogenética es importante ya que detalla las variaciones en cada individuo y puede orientar el diseño de tratamientos específicos, maximizar la efectividad, minimizar y prevenir reacciones adversas al medicamento, las fallas terapéuticas y la resistencia; aspecto a tener en cuenta en la política y estrategia del país.
Palabras clave
Referencias
Prevention CfDCa. About Parasites 2022 [acceso 27/07/2022]. Disponible en: https://www.cdc.gov/parasites/about.html.
Marie C, Petri W. Abordaje de las infecciones parasitarias: Manual MSD; 2022 [acceso 27/07/2022]. Disponible en: https://www.msdmanuals.com/es-es/professional/enfermedades-infecciosas/abordaje-de-las-infecciones-parasitarias/abordaje-de-las-infecciones-parasitarias.
Vasquez LCO. Parasitosis y antiparasitarios. Medicina UPB. 2019;38(1):46-56. DOI: https://doi.org/10.18566/medupb.v38n1.a06
Ryan KJ. Antiparasitarios y resistencia a los mismos. En: Sherris Microbiología Médica, 7e. New York, NY: McGraw-Hill Education; 2021 [acceso 27/07/2022]. Disponible en: https://accessmedicina.mhmedical.com/book.aspx?bookid=3057
García-Blanco D, Gravier-Hernández R, Rabeiro-Martínez CL, Gil-del-Valle L, Pérez-Ávila J. Pharmacogenetic Markers: A Path toward Individualized HIV Therapy. MEDICC Review 2019 [acceso 27/07/2022];21(2-3):59-68. https://www.scielosp.org/article/medicc/2019.v21n2-3/59-68/
Hawley DM, Ezenwa VO. Parasites, host behavior, and their feedbacks. Animal Behavior and Parasitism. 2022:15. DOI: https://doi.org/10.1093/oso/9780192895561.003.0002
Ryan KJ. Patogenia y diagnóstico de la infección parasitaria. En Sherris Microbiología médica, 7e. New York, NY: McGraw-Hill Education; 2021. Disponible en: https://accessmedicina.mhmedical.com/book.aspx?bookid=3057
Kozubsky LE, Costas ME. Parasitología humana para bioquímicos. Libros de Cátedra. Editorial de la Universidad de La Plata. 2023. DOI: https://doi.org/10.35537/10915/154562
Padilla-Ramos R, Salas-Muñoz S, Velásquez R, Reveles-Torres LR. Un nuevo enfoque molecular en el estudio de la interacción parásito-hospedero. Revista mexicana de fitopatología. 2019;37(1):95-114. DOI: https://doi.org/10.18781/r.mex.fit.1808-6
Berenguer JG. Manual de Parasitología. Morfología y biología de los parásitos de interés sanitario: Publicacions i Edicions de la Universitat de Barcelona; 2007 [acceso 27/07/2022]. ISBN 84-475-3141-4. Disppnible en: https://www.publicacion.ub.es
Liempi D, Zulantay I, Apt W, Canals M, Fredes F. Diagnóstico serológico y molecular aplicado a las parasitosis prevalentes y emergentes en Chile: Puesta al día. Parasitología Latinoamericana. 2020 [acceso 27/07/2022],69(2):13-42. Disponible en: https://www.researchgate.net/profile/Fernando-Fredes/publication/355478956_Serological_and_molecular_diagnosis_applied_to_the_prevalents_and_emerging_parasitosis_in_Chile_Update/links/6172f7740be8ec17a9113188
Muy Pérez A, De Lamo González E, García López-Hortelano M. Antiparasitarios en Pediatría. Guía-ABE. 2022 [acceso 27/07/2022]. Disponible en: http://www.agapap.org/druagapap/content/antiparasitarios-pediatr%C3%ADa-actualizaci%C3%B3n-la-gu%C3%ADa-abe
Nepali K, Lee HY, Liou JP. Nitro-Group-Containing Drugs. Journal of medicinal chemistry. 2019;62(6):2851-93. DOI: https://doi.org/10.1021/acs.jmedchem.8b00147
Camarero Alonso MI. Fármacos que contienen el grupo nitro: antiparasitarios [Tesis Licenciatura]. España: Facultad de Farmacia. Universidad Complutense; 2020. DOI: https://doi.org/147.96.70.122/TFG
Patterson S, Wyllie S. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects.Trends in parasitology. 2014;30(6):289-98. DOI: https://doi.org/10.1016/j.pt.2014.04.003
Rodríguez Duque R, Miguel Soca, PE. Farmacogenómica: principios y aplicaciones en la práctica médica. Revista Habanera de Ciencias Médicas. 2020;19(6):e3128. DOI: https://doi.org/0000-0003-3660-954X
Siddiqui MK, Luzum J, Coenen M, Mahmoudpour SH. Pharmacogenomics of Adverse Drug Reactions. Frontiers in Genetics. 2022;13:859909. DOI: https://doi.org/10.3389/fgene.2022.859909
Chaisson MJ, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nature communications. 2019;10(1):1784. DOI: https://doi.org/10.1038/s41467-018-08148-z
Hartley G. El código del genoma humano está completo: World Economic Forum; 2022 [acceso 27/07/2022]. Disponible en: https://es.weforum.org/agenda/2022/04/el-codigo-del-genoma-humano-por-fin-esta-completo.
Rubinstein WS, Pacanowski M. Pharmacogenetic Gene-Drug Associations: FDA Perspective on What Physicians Need to Know. American family physician. 2021,104(1):16-9. DOI: https://www.aafp.org/pubs/afp/issues/2021/0700/p16.html
Daudén E. Farmacogenética I. Concepto, historia, objetivos y áreas de estudio. Madrid. España: Servicio de Dermatología. Hospital Universitario la Princesa; 2016 [acceso 27/07/2022]. Disponible en: https://pesquisa.bvsalud.org/portal/resource/en;/ibc-049269
Chang W C, Tanoshima R, Ross CJ, Carleton BC. Challenges and opportunities in implementing pharmacogenetic testing in clinical settings. Annual Review of Pharmacology and Toxicology. 2021;61:65-84. DOI: https://doi.org/10.1146/annurev-pharmtox-030920-025745
Velozo CDA, Lamarão FRM, Alvarado-Arnez LE, Cardoso CC Pharmacogenetics of HIV therapy: State of the art in Latin American countries. Genetics and Molecular Biology. 2022, 45. DOI: http://doi.org/10.1590/1678-4685-GMB-2022-0120
Dapía García I. La farmacogenética como herramienta de la medicina personalizada: desarrollo de estrategias para su implementación en la práctica clínica e identificación de nuevas asociaciones (Tesis Doctoral). Universidad Autónoma de Madrid; 2019. Disponible em: https://hdl.handle.net/10486/687419
Díaz JDD. Desde la Genética Médica hacia la Medicina Genómica. Revista de Investigación y Educación en Ciencias de la Salud (RIECS). 2019 [acceso 27/07/2022];4(1):20-34. Disponible en: https://ebuah.uah.es/dspace/bitstream/handle/10017/37885/desde_garcia_RIECS%202019%2c%20v.%204%2c%20n.%201.pdf?sequence=1&isAllowed=y
Hahn W, Counter C, Lundberg A, Beijersbergen R, Brooks M, Weinberg R. Creation of human tumor cells with defined genetic elements. Nature. 1999;400:464-8. DOI: https://doi.org/10.1038/22780
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving personalized medicine. Pharmacological Reviews. 2023;75(4):789-814. DOI: https://doi.org/10.1124/pharmrev.122.000810
NCBI N. Database of Single Nucleotide Polymorphisms (dbSNP). National Library of Medicine. 2019. DOI: https://doi.org/10.1093/nar/28.1.352
Chaisson MJ, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, Lee C. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nature communications 2019;10(1):1784. DOI: https://doi.org/10.1038/s41467-018-08148-z
Bhangale T, Rieder M, Livingston R, Nickerson D. Comprehensive identification and characterization of diallelic insertion-deletion polymorphisms in 330 human candidate genes. Hum Mol Genet. 2005;14:59-69. DOI: https://doi.org/10.1093/hmg/ddi006
Jakubosky D, D’Antonio M, Bonder MJ, Smail C, Donovan MK, Young WW, Frazer KA. Properties of structural variants and short tandem repeats associated with gene expression and complex traits. Nature communications. 2020,11(1):2927. DOI: https://doi.org/10.1038/s41467-020-16482-4
Saitou M, Gokcumen O. An evolutionary perspective on the impact of genomic copy number variation on human health. Journal of molecular evolution. 2020,88(1):104-19. DOI: https://doi.org/10.1007/s00239-019-09911-6
Kassogue Y, Diakite B, Maiga M, Kassogue O, Konate I, Tamboura K, et al. Influence of CYP2B6 and CYP3A4 polymorphisms on the virologic and immunological responses of patients treated with efavirenz containing regimen. Pharmacogenetics and genomics. 2022,32(6):219. DOI: https://doi.org/10.1097/FPC.0000000000000477
Li Y, Deshpande P, Hertzman RJ, Palubinsky AM, Gibson A, Phillips EJ. Genomic risk factors driving immune-mediated delayed drug hypersensitivity reactions. Frontiers in Genetics. 2021;12:641905. DOI: https://doi.org/10.3389/fgene.2021.641905
Moyer AM, Reid JM. Drug metabolism, transport, and pharmacogenomics. Yamada's Textbook of Gastroenterology. 2022:522-39. DOI: https://doi.org/10.1002/9781119600206.ch28
Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F, Saturnino C, et al. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules. 2022;27(3):616.
Daali Y, Rostami-Hodjegan A, Samer CF. Precision Medicine: Impact of Cytochromes P450 and Transporters Genetic Polymorphisms, Drug-Drug Interactions, Disease on Safety and Efficacy of Drugs. Frontiers in Pharmacology. 2022;12:4062. DOI: https://doi.org/10.3390/molecules27030616
Moyer AM, Gandhi MJ. Human leukocyte antigen (HLA) testing in pharmacogenomics. En: Pharmacogenomics in Drug Discovery and Development. New York, NY: Springer US;2022. DOI: https://doi.org/10.1007/978-1-0716-2573-6_2
Amur S. Integration and use of biomarkers in drug development, regulation and clinical practice: a US regulatory perspective. Biomark Med. 2008;2(3):305-11 https://doi.org/10.2217/17520363.2.3.305
Jiang H, Wang CW, Wang Z, Dai Y, Zhu Y, Lee YS, et al. Functional and structural characteristics of HLA-B* 13: 01-mediated specific T cells reaction in dapsone-induced drug hypersensitivity. Journal of Biomedical Science. 2022,29(1):1-21. DOI: https://doi.org/10.1186/s12929-022-00845-8
Zhou Y, Koutsilieri S, Eliasson E, Lauschke VM. A paradigm shift in pharmacogenomics: From candidate polymorphisms to comprehensive sequencing. Basic & Clinical Pharmacology & Toxicology. 2022,131(6):452-64. DOI: https://doi.org/10.1111/bcpt.13779
Dumond J, Vourvahis M, Rezk N. A phenotype-genotype approach to predicting CYP450 and P-glycoprotein drug interactions with the mixed inhibitor/inducer tipranavir/ritonavir Clin Pharmacol Ther. 2010;87(6):735-42. DOI: https://doi.org/10.1038/clpt.2009.253
PharmGKB. Antiparasitic Products, Insecticides and Repellents. 2022 [acceso 27/07/2022]. Disponible en: https://www.pharmgkb.org/chemical/PA164712479/labelAnnotation.
Ryan K, Tekwani BL. Current investigations on clinical pharmacology and therapeutics of glucose-6-phosphate dehydrogenase deficiency. Pharmacology & therapeutics. 2021;222:107788. DOI: https://doi.org/10.1016/j.pharmthera.2020.107788
Bennett JW, Pybus BS, Yadava A, Tosh D, Sousa JC, McCarthy WF, et al. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. The New England Journal of Medicine. 2013;369(14):1381-2. DOI: https://doi.org/10.1056/NEJMc1301936
Marwa KJ, Kapesa A, Kamugisha E, Swedberg G. The Influence of Cytochrome P450 Polymorphisms on Pharmacokinetic Profiles and Treatment Outcomes Among Malaria Patients in Sub-Saharan Africa: A Systematic Review. Pharmacogenomics and Personalized Medicine. 2023:449-61. DOI: https://doi.org/10.2147/PGPM.S379945
Popovici J, Tebben K, Witkowski B, Serre D. Primaquine for Plasmodium vivax radical cure: What we do not know and why it matters. International Journal for Parasitology: Drugs and Drug Resistance. 2021;15:36-42. DOI: https://doi.org/10.1016/j.ijpddr.2020.12.004
Park YA, Park KH, Yoon HY, Yee J, Gwak HS. Effects of CYP2D6 genotypes on Plasmodium vivax recurrence after primaquine treatment: A meta-analysis. Travel Medicine and Infectious Diseases. 2022;48:102333. DOI: https://doi.org/10.1016/j.tmaid.2022.102333
Mwaiswelo RO, Ngasala B, Msolo D, Kweka E, Mmbando BP, Mårtensson A. A single low dose of primaquine is safe and sufficient to reduce transmission of Plasmodium falciparum gametocytes regardless of cytochrome P450 2D6 enzyme activity in Bagamoyo district, Tanzania. Malaria journal. 2022;21(1):84. DOI: https://doi.org/10.1186/s12936-022-04100-1
Milligan R, Daher A, Villanueva G, Bergman H, Graves PM. Primaquine alternative dosing schedules for preventing malaria relapse in people with Plasmodium vivax. Cochrane Database of Systematic Reviews. 2020;(8):CD012656. DOI: https://doi.org/10.1002/14651858.CD012656.pub3
Ravikumar N, Greenfield G. Glucose-6-phosphate dehydrogenase deficiency: a review. International Journal of Medical Students. 2020;8(3):281-7. DOI: https://doi.org/10.5195/ijms.2020.637
Rocca M, Temiz Y, Salva ML, Castonguay S, Gervais T, Niemeyer CM, et al. Rapid quantitative assays for glucose-6-phosphate dehydrogenase (G6PD) and hemoglobin combined on a capillary-driven microfluidic chip. Lab on a Chip. 2021;21(18):3573-82. DOI: https://doi.org/10.1039/d1lc00354b
Dunyo S, Sirugo G, Sesay S, Bisseye C, Njie F, Adiamoh M, et al. Randomized trial of safety and effectiveness of chlorproguanil-dapsone and lumefantrine-artemether for uncomplicated malaria in children in the Gambia. PloS one. 2011;6(6):e17371. DOI: https://doi.org/10.1371/journal.pone.0017371
Sulistyaningrum N, Arlinda D, Hutagalung J, Sunarno S, Oktoberia IS, Handayani S, et al. Prevalence of glucose 6-phosphate dehydrogenase variants in malaria-endemic areas of south central timor, eastern Indonesia. The American Journal of Tropical Medicine and Hygiene. 2020;103(2):760. DOI: https://doi.org/10.4269/ajtmh.19-0780
Koromina M, Pandi MT, van der Spek PJ, Patrinos GP, Lauschke VM. The ethnogeographic variability of genetic factors underlying G6PD deficiency. Pharmacological Research. 2021;173:105904. DOI: https://doi.org/10.1016/j.phrs.2021.105904
Nascimento JR, Brito-Sousa JD, Almeida ACG, Melo MM, Costa MRF, Barbosa LRA, et al. Prevalence of glucose 6-phosphate dehydrogenase deficiency in highly malaria-endemic municipalities in the Brazilian Amazon: A region-wide screening study. The Lancet Regional Health–Americas. 2022;12:100273. DOI: https://doi.org/10.1016/j.lana.2022.100273
Langmia IM, Just KS, Yamoune S, Brockmöller J, Masimirembwa C, Stingl JC. CYP2B6 functional variability in drug metabolism and exposure across populations—implication for drug safety, dosing, and individualized therapy. Frontiers in genetics. 2021;12:692234. DOI: https://doi.org/10.3389/fgene.2021.692234
Devine A, Howes RE, Price DJ, Moore KA, Ley B, Simpson JA, Price RN. Cost-effectiveness analysis of sex-stratified plasmodium vivax treatment strategies using available G6PD diagnostics to accelerate access to radical cure. The American journal of tropical medicine and hygiene. 2020;103(1):394. DOI: https://doi.org/10.4269/ajtmh.19-0943
Vantaux A, Kim S, Piv E, Chy S, Berne L, Khim N, et al. Significant efficacy of a single low dose of primaquine compared to stand-alone artemisinin combination therapy in reducing gametocyte carriage in Cambodian patients with uncomplicated multidrug-resistant Plasmodium falciparum malaria. Antimicrobial Agents and Chemotherapy. 2020;64(6):e02108-19. DOI: https://doi.org/10.1128/AAC.02108-19
Abdullahi ST, Soyinka JO, Olagunju A, Bolarinwa RA, Olarewaju OJ, Bakare-Odunola MT, et al. CYP2B6*6 Genotype Specific Differences in Artemether-Lumefantrine Disposition in Healthy Volunteers. Journal of clinical pharmacology. 2020;60(3):351-60. DOI: https://doi.org/10.1002/jcph.1527
Mutagonda RF, Kamuhabwa AAR, Minzi OMS, Massawe SN, Asghar M, Homann MV, et al. Effect of pharmacogenetics on plasma lumefantrine pharmacokinetics and malaria treatment outcome in pregnant women. Malaria Journal. 2017;16(1):267. DOI: https://doi.org/10.1186/s12936-017-1914-9
Sortica VA, Lindenau JD-R, Cunha MG, O Ohnishi MD, R Ventura AM, Ribeiro-Dos-Santos Â, et al. SLCO1A2, SLCO1B1 and SLCO2B1 polymorphisms influences chloroquine and primaquine treatment in Plasmodium vivax malaria. 2017;18:1393-400. DOI: https://doi.org/10.2217/pgs-2017-0077
Kos BM, Queiroz GL, Branco ACD Benefícios da farmacogenética para o direcionamento correto do tratamento farmacológico ao paciente: revisão integrativa: Benefits of pharmacogenetics for the correct orientation of the patient's pharmacological treatment: an integrative review. Journal Archives of Health. 2022;3(2):498-504. DOI: https://doi.org/10.46919/archv3n2espec-006
Yu ZJ, Mosher EP, Bumpus NN. Pharmacogenomics of antiretroviral drug metabolism and transport. Annu Rev Pharmacol Toxicol. 2021;61:565-85. DOI: https://doi.org/10.1146/annurev-pharmtox-021320-111248
Chamboko CR, Veldman W, Tata RB, Schoeberl B, Tastan Bishop Ö. Human cytochrome P450 1, 2, 3 families as pharmacogenes with emphases on their antimalarial and antituberculosis drugs and prevalent African alleles. International Journal of Molecular Sciences. 2023;24(4):3383. DOI: https://doi.org/10.3390/ijms24043383
Pernaute-Lau L, Morris U, Msellem M, Mårtensson A, Björkman A, Gil JP. Influence of cytochrome P450 (CYP) 2C8 polymorphisms on the efficacy and tolerability of artesunate‐amodiaquine treatment of uncomplicated Plasmodium falciparum malaria in Zanzibar. Malaria Journal. 2021; 20:1-7. DOI: https://doi.org/10.1186/s12936-021-03620-6
Premji Z, Umeh RE, Owusu-Agyei S, Esamai F, Ezedinachi EU, Oguche S, et al. Chlorproguanil-dapsone-artesunate versus artemether-lumefantrine: a randomized, double-blind phase III trial in African children and adolescents with uncomplicated Plasmodium falciparum malaria. PloS one. 2009;4(8):e6682. DOI: https://doi.org/10.1371/journal.pone.0006682
Douzinas EE, Flevari K, Andrianakis I, Betrosian AP. Oral atovaquone for the treatment of severe Pneumocystis jirovecii pneumonia in a patient with glucose-6-phosphate dehydrogenase deficiency. Scandinavian journal of infectious diseases. 2010;42(1):76-8. DOI: https://doi.org/10.3109/00365540903321606
Nelwan EJ, Shakinah S, Pasaribu A. Association of G6PD status and haemolytic anaemia in patients receiving anti-malarial agents: a systematic review and meta-analysis. Malaria Journal. 2023;22(1):77. DOI: https://doi.org/10.1186/s12936-023-04493-7
Gendrot M, Delandre O, Robert MG, Foguim FT, Benoit N, Amalvict R. French National Reference Centre for Imported Malaria Study Group. Absence of association between methylene blue reduced susceptibility and polymorphisms in 12 genes involved in antimalarial drug resistance in African Plasmodium falciparum. Pharmaceuticals. 2021;14(4):351. DOI: https://doi.org/10.3390/ph14040351
Alloueche A, Bailey W, Barton S, Bwika J, Chimpeni P, Falade CO, et al. Comparison of chlorproguanil-dapsone with sulfadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in young African children: double-blind randomised controlled trial. Lancet (London, England). 2004;363(9424):1843-8. DOI: https://doi.org/10.1016/S0140-6736(04)16350-2
Tempark T, Satapornpong P, Rerknimitr P, Nakkam N, Saksit N, Wattanakrai P, et al. Dapsone-induced severe cutaneous adverse drug reactions are strongly linked with HLA-B*13: 01 allele in the Thai population. Pharmacogenetics and genomics. 2017;27(12):429-37. DOI: https://doi.org/10.1097/FPC.0000000000000306
Tungsiripat M, Drechsler H, Sarlone C, Amyot K, Laffey E, Aberg J. Prevalence and significance of G6PD deficiency in patients of an urban HIV clinic. Journal of the International Association of Physicians in AIDS Care (Chicago, Ill: 2002). 2008;7(2):88-90. DOI: https://doi.org/10.1177/1545109708315324
Yue Z, Sun Y, Wang C, Yu W, Cao J, Bao F, et al. Amino Acid Variants of HLA-DRB1 Confer Susceptibility to Dapsone Hypersensitivity Syndrome in Addition to HLA-B*13:01. The Journal of investigative dermatology. 2018;138(5):1101-6. DOI: https://doi.org/10.1016/j.jid.2017.11.027
Harinasuta T, Bunnag D, Lasserre R, Leimer R, Vinijanont S. Trials of mefloquine in vivax and of mefloquine plus 'fansidar' in falciparum malaria. Lancet (London, England). 1985, 20;1(8434):885-8. DOI: https://doi.org/10.1016/s0140-6736(85)91670-8
Stancil SL, Pearce RE, Tyndale RF, Kearns GL, Vyhlidal CA, Leeder JS, et al. Evaluating metronidazole as a novel, safe CYP2A6 phenotyping probe in healthy adults. British journal of clinical pharmacology. 2019 May;85(5):960-9. DOI: https://doi.org/10.1111/bcp.13884
Zhang P, Gao X, Ishida H, Amnuaysirikul J, Weina PJ, Grogl M, et al. An in vivo drug screening model using glucose-6-phosphate dehydrogenase deficient mice to predict the hemolytic toxicity of 8-aminoquinolines. The American journal of tropical medicine and hygiene. 2013;88(6):1138-45. DOI: https://doi.org/10.4269/ajtmh.12-0682
Flaherty S, Strauch P, Maktabi M, Pybus BS, Reichard G, Walker LA, Rochford R. Mechanisms of 8‐aminoquinoline induced haemolytic toxicity in a G6PDd humanized mouse model. Journal of Cellular and Molecular Medicine. 2022;26(13):3675-86. DOI: https://doi.org/10.1111/jcmm.17362
Giordano C, Pallotti F, Walker WF, Checcarelli N, Musumeci O, Santorelli F, et al. Pathogenesis of the deafness-associated A1555G mitochondrial DNA mutation. Biochemical and biophysical research communications. 2002 Apr 26;293(1):521-9. DOI: https://doi.org/10.1016/S0006-291X(02)00256-5
Mnkugwe RH, Minzi O, Kinung'hi S, Kamuhabwa A, Aklillu E. Effect of Pharmacogenetics Variations on Praziquantel Plasma Concentrations and Schistosomiasis Treatment Outcomes Among Infected School-Aged Children in Tanzania. Frontiers in pharmacology. 2021;12:712084. DOI: https://doi.org/10.3389/fphar.2021.712084
Domingo GJ, Advani N, Satyagraha AW, Sibley CH, Rowley E, Kalnoky M, Kelley M. Addressing the gender-knowledge gap in glucose-6-phosphate dehydrogenase deficiency: challenges and opportunities. International health. 2019;11(1):7-14. DOI: https://doi.org/10.1093/inthealth/ihy060
Sortica VA, Lindenau JD, Cunha MG, MD OO, AM RV, Ribeiro-Dos-Santos ÂK, et al. SLCO1A2, SLCO1B1 and SLCO2B1 polymorphisms influences chloroquine and primaquine treatment in Plasmodium vivax malaria. Pharmacogenomics. 2017;18(15):1393-400. DOI: https://doi.org/10.2217/pgs-2017-0077
Shekalaghe SA, ter Braak R, Daou M, Kavishe R, van den Bijllaardt W, van den Bosch S, et al. In Tanzania, hemolysis after a single dose of primaquine coadministered with an artemisinin is not restricted to glucose-6-phosphate dehydrogenase-deficient (G6PD A-) individuals. Antimicrobial agents and chemotherapy. 2010 May;54(5):1762-8. DOI: https://doi.org/10.1128/AAC.01135-09
Matthaei J, Seitz T, Jensen O, Tann A, Prukop T, Tadjerpisheh S, et al. OCT1 Deficiency Affects Hepatocellular Concentrations and Pharmacokinetics of Cycloguanil, the Active Metabolite of the Antimalarial Drug Proguanil. Clinical pharmacology and therapeutics. 2019;105(1):190-200. DOI: https://doi.org/10.1002/cpt.1128
Koromina M, Pandi MT, van der Spek PJ, Patrinos GP, Lauschke VM. The ethnogeographic variability of genetic factors underlying G6PD deficiency. Pharmacological Research. 2021;173:105904. DOI: https://doi.org/10.1016/j.phrs.2021.105904
Enlaces refback
- No hay ningún enlace refback.
Copyright (c) 2024 Lizette Gil del Valle, Sudanny Milagro de los Ríos Torres, Luis Jerez Puebla, Dora Emma Ginorio Gavito
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.